3 / 2 \ / 3\ \2*x + 1/ *log\1 + 2*x /
(2*x^2 + 1)^3*log(1 + 2*x^3)
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
; to find :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
3 2 / 2 \ 2 6*x *\2*x + 1/ / 2 \ / 3\ ---------------- + 12*x*\2*x + 1/ *log\1 + 2*x / 3 1 + 2*x
/ 2 / 3 \\ | / 2\ | 3*x || | x*\1 + 2*x / *|-1 + --------|| | 3 / 2\ | 3|| / 2\ |/ 2\ / 3\ 12*x *\1 + 2*x / \ 1 + 2*x /| 12*\1 + 2*x /*|\1 + 10*x /*log\1 + 2*x / + ---------------- - -----------------------------| | 3 3 | \ 1 + 2*x 1 + 2*x /
/ 3 / 3 6 \ \ |/ 2\ | 18*x 36*x | 2 / 3 \ | |\1 + 2*x / *|1 - -------- + -----------| 2 / 2\ | 3*x | | | | 3 2| 36*x *\1 + 2*x / *|-1 + --------| | | | 1 + 2*x / 3\ | | 3| 2 / 2\ / 2\| | \ \1 + 2*x / / / 2\ / 3\ \ 1 + 2*x / 18*x *\1 + 2*x /*\1 + 10*x /| 12*|---------------------------------------- + 8*x*\3 + 10*x /*log\1 + 2*x / - --------------------------------- + ----------------------------| | 3 3 3 | \ 1 + 2*x 1 + 2*x 1 + 2*x /