Mister Exam

Other calculators

Derivative of (2x²+1)³*ln(1+2x³)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
          3              
/   2    \     /       3\
\2*x  + 1/ *log\1 + 2*x /
$$\left(2 x^{2} + 1\right)^{3} \log{\left(2 x^{3} + 1 \right)}$$
(2*x^2 + 1)^3*log(1 + 2*x^3)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
               3                                 
   2 /   2    \                   2              
6*x *\2*x  + 1/         /   2    \     /       3\
---------------- + 12*x*\2*x  + 1/ *log\1 + 2*x /
           3                                     
    1 + 2*x                                      
$$\frac{6 x^{2} \left(2 x^{2} + 1\right)^{3}}{2 x^{3} + 1} + 12 x \left(2 x^{2} + 1\right)^{2} \log{\left(2 x^{3} + 1 \right)}$$
The second derivative [src]
              /                                                           2 /          3  \\
              |                                                 /       2\  |       3*x   ||
              |                                               x*\1 + 2*x / *|-1 + --------||
              |                                3 /       2\                 |            3||
   /       2\ |/        2\    /       3\   12*x *\1 + 2*x /                 \     1 + 2*x /|
12*\1 + 2*x /*|\1 + 10*x /*log\1 + 2*x / + ---------------- - -----------------------------|
              |                                       3                         3          |
              \                                1 + 2*x                   1 + 2*x           /
$$12 \left(2 x^{2} + 1\right) \left(\frac{12 x^{3} \left(2 x^{2} + 1\right)}{2 x^{3} + 1} - \frac{x \left(2 x^{2} + 1\right)^{2} \left(\frac{3 x^{3}}{2 x^{3} + 1} - 1\right)}{2 x^{3} + 1} + \left(10 x^{2} + 1\right) \log{\left(2 x^{3} + 1 \right)}\right)$$
The third derivative [src]
   /          3 /         3            6   \                                                                                                   \
   |/       2\  |     18*x         36*x    |                                                   2 /          3  \                               |
   |\1 + 2*x / *|1 - -------- + -----------|                                       2 /       2\  |       3*x   |                               |
   |            |           3             2|                                   36*x *\1 + 2*x / *|-1 + --------|                               |
   |            |    1 + 2*x    /       3\ |                                                     |            3|       2 /       2\ /        2\|
   |            \               \1 + 2*x / /       /        2\    /       3\                     \     1 + 2*x /   18*x *\1 + 2*x /*\1 + 10*x /|
12*|---------------------------------------- + 8*x*\3 + 10*x /*log\1 + 2*x / - --------------------------------- + ----------------------------|
   |                       3                                                                       3                                3          |
   \                1 + 2*x                                                                 1 + 2*x                          1 + 2*x           /
$$12 \left(- \frac{36 x^{2} \left(2 x^{2} + 1\right)^{2} \left(\frac{3 x^{3}}{2 x^{3} + 1} - 1\right)}{2 x^{3} + 1} + \frac{18 x^{2} \left(2 x^{2} + 1\right) \left(10 x^{2} + 1\right)}{2 x^{3} + 1} + 8 x \left(10 x^{2} + 3\right) \log{\left(2 x^{3} + 1 \right)} + \frac{\left(2 x^{2} + 1\right)^{3} \left(\frac{36 x^{6}}{\left(2 x^{3} + 1\right)^{2}} - \frac{18 x^{3}}{2 x^{3} + 1} + 1\right)}{2 x^{3} + 1}\right)$$