Mister Exam

Derivative of 2e^(2x)-4e^(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2*x      x
2*e    - 4*e 
4ex+2e2x- 4 e^{x} + 2 e^{2 x}
d /   2*x      x\
--\2*e    - 4*e /
dx               
ddx(4ex+2e2x)\frac{d}{d x} \left(- 4 e^{x} + 2 e^{2 x}\right)
Detail solution
  1. Differentiate 4ex+2e2x- 4 e^{x} + 2 e^{2 x} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=2xu = 2 x.

      2. The derivative of eue^{u} is itself.

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2e2x2 e^{2 x}

      So, the result is: 4e2x4 e^{2 x}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of exe^{x} is itself.

        So, the result is: 4ex4 e^{x}

      So, the result is: 4ex- 4 e^{x}

    The result is: 4e2x4ex4 e^{2 x} - 4 e^{x}

  2. Now simplify:

    4(ex1)ex4 \left(e^{x} - 1\right) e^{x}


The answer is:

4(ex1)ex4 \left(e^{x} - 1\right) e^{x}

The graph
02468-8-6-4-2-1010-20000000002000000000
The first derivative [src]
     x      2*x
- 4*e  + 4*e   
4e2x4ex4 e^{2 x} - 4 e^{x}
The second derivative [src]
  /        x\  x
4*\-1 + 2*e /*e 
4(2ex1)ex4 \cdot \left(2 e^{x} - 1\right) e^{x}
The third derivative [src]
  /        x\  x
4*\-1 + 4*e /*e 
4(4ex1)ex4 \cdot \left(4 e^{x} - 1\right) e^{x}
The graph
Derivative of 2e^(2x)-4e^(x)