Mister Exam

Other calculators

2x^2+2(sqrt8)xy-5y^2 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
     2      2           ___    
- 5*y  + 2*x  + 4*x*y*\/ 2  = 0
$$2 x^{2} + 4 \sqrt{2} x y - 5 y^{2} = 0$$
2*x^2 + 4*sqrt(2)*x*y - 5*y^2 = 0
Detail solution
Given line equation of 2-order:
$$2 x^{2} + 4 \sqrt{2} x y - 5 y^{2} = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 2$$
$$a_{12} = 2 \sqrt{2}$$
$$a_{13} = 0$$
$$a_{22} = -5$$
$$a_{23} = 0$$
$$a_{33} = 0$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}2 & 2 \sqrt{2}\\2 \sqrt{2} & -5\end{matrix}\right|$$
$$\Delta = -18$$
Because
$$\Delta$$
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
$$a_{11} x_{0} + a_{12} y_{0} + a_{13} = 0$$
$$a_{12} x_{0} + a_{22} y_{0} + a_{23} = 0$$
substitute coefficients
$$2 x_{0} + 2 \sqrt{2} y_{0} = 0$$
$$2 \sqrt{2} x_{0} - 5 y_{0} = 0$$
then
$$x_{0} = 0$$
$$y_{0} = 0$$
Thus, we have the equation in the coordinate system O'x'y'
$$a'_{33} + a_{11} x'^{2} + 2 a_{12} x' y' + a_{22} y'^{2} = 0$$
where
$$a'_{33} = a_{13} x_{0} + a_{23} y_{0} + a_{33}$$
or
$$a'_{33} = 0$$
$$a'_{33} = 0$$
then equation turns into
$$2 x'^{2} + 4 \sqrt{2} x' y' - 5 y'^{2} = 0$$
Rotate the resulting coordinate system by an angle φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - determined from the formula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
substitute coefficients
$$\cot{\left(2 \phi \right)} = \frac{7 \sqrt{2}}{8}$$
then
$$\phi = \frac{\operatorname{acot}{\left(\frac{7 \sqrt{2}}{8} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = \frac{4 \sqrt{2}}{9}$$
$$\cos{\left(2 \phi \right)} = \frac{7}{9}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{2 \sqrt{2}}{3}$$
$$\sin{\left(\phi \right)} = \frac{1}{3}$$
substitute coefficients
$$x' = \frac{2 \sqrt{2} \tilde x}{3} - \frac{\tilde y}{3}$$
$$y' = \frac{\tilde x}{3} + \frac{2 \sqrt{2} \tilde y}{3}$$
then the equation turns from
$$2 x'^{2} + 4 \sqrt{2} x' y' - 5 y'^{2} = 0$$
to
$$- 5 \left(\frac{\tilde x}{3} + \frac{2 \sqrt{2} \tilde y}{3}\right)^{2} + 4 \sqrt{2} \left(\frac{\tilde x}{3} + \frac{2 \sqrt{2} \tilde y}{3}\right) \left(\frac{2 \sqrt{2} \tilde x}{3} - \frac{\tilde y}{3}\right) + 2 \left(\frac{2 \sqrt{2} \tilde x}{3} - \frac{\tilde y}{3}\right)^{2} = 0$$
simplify
$$3 \tilde x^{2} - 6 \tilde y^{2} = 0$$
Given equation is degenerate hyperbole
$$\frac{\tilde x^{2}}{\left(\frac{\sqrt{3}}{3}\right)^{2}} - \frac{\tilde y^{2}}{\left(\frac{\sqrt{6}}{6}\right)^{2}} = 0$$
- reduced to canonical form
The center of canonical coordinate system at point O
(0, 0)

Basis of the canonical coordinate system
$$\vec e_1 = \left( \frac{2 \sqrt{2}}{3}, \ \frac{1}{3}\right)$$
$$\vec e_2 = \left( - \frac{1}{3}, \ \frac{2 \sqrt{2}}{3}\right)$$
Invariants method
Given line equation of 2-order:
$$2 x^{2} + 4 \sqrt{2} x y - 5 y^{2} = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 2$$
$$a_{12} = 2 \sqrt{2}$$
$$a_{13} = 0$$
$$a_{22} = -5$$
$$a_{23} = 0$$
$$a_{33} = 0$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = -3$$
     |             ___|
     |   2     2*\/ 2 |
I2 = |                |
     |    ___         |
     |2*\/ 2     -5   |

$$I_{3} = \left|\begin{matrix}2 & 2 \sqrt{2} & 0\\2 \sqrt{2} & -5 & 0\\0 & 0 & 0\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}2 - \lambda & 2 \sqrt{2}\\2 \sqrt{2} & - \lambda - 5\end{matrix}\right|$$
     |2  0|   |-5  0|
K2 = |    | + |     |
     |0  0|   |0   0|

$$I_{1} = -3$$
$$I_{2} = -18$$
$$I_{3} = 0$$
$$I{\left(\lambda \right)} = \lambda^{2} + 3 \lambda - 18$$
$$K_{2} = 0$$
Because
$$I_{3} = 0 \wedge I_{2} < 0$$
then by line type:
this equation is of type : degenerate hyperbole
Make the characteristic equation for the line:
$$- I_{1} \lambda + I_{2} + \lambda^{2} = 0$$
or
$$\lambda^{2} + 3 \lambda - 18 = 0$$
$$\lambda_{1} = 3$$
$$\lambda_{2} = -6$$
then the canonical form of the equation will be
$$\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2} + \frac{I_{3}}{I_{2}} = 0$$
or
$$3 \tilde x^{2} - 6 \tilde y^{2} = 0$$
$$\frac{\tilde x^{2}}{\left(\frac{\sqrt{3}}{3}\right)^{2}} - \frac{\tilde y^{2}}{\left(\frac{\sqrt{6}}{6}\right)^{2}} = 0$$
- reduced to canonical form