Given equation of the surface of 2-order:
$$6 x y - 6 x + 5 x_{2} - 10 y + 5 y_{2} - 3 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x y_{2} + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y y_{2} + 2 a_{24} y + a_{33} y_{2}^{2} + 2 a_{34} y_{2} + a_{44} = 0$$
where
$$a_{11} = 0$$
$$a_{12} = 3$$
$$a_{13} = 0$$
$$a_{14} = -3$$
$$a_{22} = 0$$
$$a_{23} = 0$$
$$a_{24} = -5$$
$$a_{33} = 0$$
$$a_{34} = \frac{5}{2}$$
$$a_{44} = 5 x_{2} - 3$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
|a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33|
$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
|a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44|
|a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44|
substitute coefficients
$$I_{1} = 0$$
|0 3| |0 0| |0 0|
I2 = | | + | | + | |
|3 0| |0 0| |0 0|
$$I_{3} = \left|\begin{matrix}0 & 3 & 0\\3 & 0 & 0\\0 & 0 & 0\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}0 & 3 & 0 & -3\\3 & 0 & 0 & -5\\0 & 0 & 0 & \frac{5}{2}\\-3 & -5 & \frac{5}{2} & 5 x_{2} - 3\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 3 & 0\\3 & - \lambda & 0\\0 & 0 & - \lambda\end{matrix}\right|$$
|0 -3 | |0 -5 | | 0 5/2 |
K2 = | | + | | + | |
|-3 -3 + 5*x2| |-5 -3 + 5*x2| |5/2 -3 + 5*x2|
|0 3 -3 | |0 0 -5 | |0 0 -3 |
| | | | | |
K3 = |3 0 -5 | + |0 0 5/2 | + |0 0 5/2 |
| | | | | |
|-3 -5 -3 + 5*x2| |-5 5/2 -3 + 5*x2| |-3 5/2 -3 + 5*x2|
$$I_{1} = 0$$
$$I_{2} = -9$$
$$I_{3} = 0$$
$$I_{4} = \frac{225}{4}$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 9 \lambda$$
$$K_{2} = - \frac{161}{4}$$
$$K_{3} = 117 - 45 x_{2}$$
Because
$$I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0$$
then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
or
$$\lambda^{3} - 9 \lambda = 0$$
$$\lambda_{1} = -3$$
$$\lambda_{2} = 3$$
$$\lambda_{3} = 0$$
then the canonical form of the equation will be
$$\tilde y2 \cdot 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
and
$$- \tilde y2 \cdot 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0$$
$$- 3 \tilde x^{2} + 3 \tilde y^{2} + 5 \tilde y2 = 0$$
and
$$- 3 \tilde x^{2} + 3 \tilde y^{2} - 5 \tilde y2 = 0$$
$$- 2 \tilde y2 + \left(\frac{\tilde x^{2}}{\frac{5}{6}} - \frac{\tilde y^{2}}{\frac{5}{6}}\right) = 0$$
and
$$2 \tilde y2 + \left(\frac{\tilde x^{2}}{\frac{5}{6}} - \frac{\tilde y^{2}}{\frac{5}{6}}\right) = 0$$
this equation is fora type hyperbolic paraboloid
- reduced to canonical form