Mister Exam

5x2+6xy+5y2−6x−10y−3=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
-3 - 10*y - 6*x + 5*x2 + 5*y2 + 6*x*y = 0
6xy6x+5x210y+5y23=06 x y - 6 x + 5 x_{2} - 10 y + 5 y_{2} - 3 = 0
6*x*y - 6*x + 5*x2 - 10*y + 5*y2 - 3 = 0
Invariants method
Given equation of the surface of 2-order:
6xy6x+5x210y+5y23=06 x y - 6 x + 5 x_{2} - 10 y + 5 y_{2} - 3 = 0
This equation looks like:
a11x2+2a12xy+2a13xy2+2a14x+a22y2+2a23yy2+2a24y+a33y22+2a34y2+a44=0a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x y_{2} + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y y_{2} + 2 a_{24} y + a_{33} y_{2}^{2} + 2 a_{34} y_{2} + a_{44} = 0
where
a11=0a_{11} = 0
a12=3a_{12} = 3
a13=0a_{13} = 0
a14=3a_{14} = -3
a22=0a_{22} = 0
a23=0a_{23} = 0
a24=5a_{24} = -5
a33=0a_{33} = 0
a34=52a_{34} = \frac{5}{2}
a44=5x23a_{44} = 5 x_{2} - 3
The invariants of the equation when converting coordinates are determinants:
I1=a11+a22+a33I_{1} = a_{11} + a_{22} + a_{33}
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I4=a11a12a13a14a12a22a23a24a13a23a33a34a14a24a34a44I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|
I(λ)=a11λa12a13a12a22λa23a13a23a33λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
I1=0I_{1} = 0
     |0  3|   |0  0|   |0  0|
I2 = |    | + |    | + |    |
     |3  0|   |0  0|   |0  0|

I3=030300000I_{3} = \left|\begin{matrix}0 & 3 & 0\\3 & 0 & 0\\0 & 0 & 0\end{matrix}\right|
I4=030330050005235525x23I_{4} = \left|\begin{matrix}0 & 3 & 0 & -3\\3 & 0 & 0 & -5\\0 & 0 & 0 & \frac{5}{2}\\-3 & -5 & \frac{5}{2} & 5 x_{2} - 3\end{matrix}\right|
I(λ)=λ303λ000λI{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 3 & 0\\3 & - \lambda & 0\\0 & 0 & - \lambda\end{matrix}\right|
     |0      -3    |   |0      -5    |   | 0      5/2   |
K2 = |             | + |             | + |              |
     |-3  -3 + 5*x2|   |-5  -3 + 5*x2|   |5/2  -3 + 5*x2|

     |0   3      -3    |   |0    0      -5    |   |0    0      -3    |
     |                 |   |                  |   |                  |
K3 = |3   0      -5    | + |0    0      5/2   | + |0    0      5/2   |
     |                 |   |                  |   |                  |
     |-3  -5  -3 + 5*x2|   |-5  5/2  -3 + 5*x2|   |-3  5/2  -3 + 5*x2|

I1=0I_{1} = 0
I2=9I_{2} = -9
I3=0I_{3} = 0
I4=2254I_{4} = \frac{225}{4}
I(λ)=λ3+9λI{\left(\lambda \right)} = - \lambda^{3} + 9 \lambda
K2=1614K_{2} = - \frac{161}{4}
K3=11745x2K_{3} = 117 - 45 x_{2}
Because
I3=0I20I40I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0
then by type of surface:
you need to
Make the characteristic equation for the surface:
I1λ2+I2λI3+λ3=0- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0
or
λ39λ=0\lambda^{3} - 9 \lambda = 0
λ1=3\lambda_{1} = -3
λ2=3\lambda_{2} = 3
λ3=0\lambda_{3} = 0
then the canonical form of the equation will be
y~22(1)I4I2+(x~2λ1+y~2λ2)=0\tilde y2 \cdot 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0
and
y~22(1)I4I2+(x~2λ1+y~2λ2)=0- \tilde y2 \cdot 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0
3x~2+3y~2+5y~2=0- 3 \tilde x^{2} + 3 \tilde y^{2} + 5 \tilde y2 = 0
and
3x~2+3y~25y~2=0- 3 \tilde x^{2} + 3 \tilde y^{2} - 5 \tilde y2 = 0
2y~2+(x~256y~256)=0- 2 \tilde y2 + \left(\frac{\tilde x^{2}}{\frac{5}{6}} - \frac{\tilde y^{2}}{\frac{5}{6}}\right) = 0
and
2y~2+(x~256y~256)=02 \tilde y2 + \left(\frac{\tilde x^{2}}{\frac{5}{6}} - \frac{\tilde y^{2}}{\frac{5}{6}}\right) = 0
this equation is fora type hyperbolic paraboloid
- reduced to canonical form