Given equation of the surface of 2-order:
6 x y − 6 x + 5 x 2 − 10 y + 5 y 2 − 3 = 0 6 x y - 6 x + 5 x_{2} - 10 y + 5 y_{2} - 3 = 0 6 x y − 6 x + 5 x 2 − 10 y + 5 y 2 − 3 = 0 This equation looks like:
a 11 x 2 + 2 a 12 x y + 2 a 13 x y 2 + 2 a 14 x + a 22 y 2 + 2 a 23 y y 2 + 2 a 24 y + a 33 y 2 2 + 2 a 34 y 2 + a 44 = 0 a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x y_{2} + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y y_{2} + 2 a_{24} y + a_{33} y_{2}^{2} + 2 a_{34} y_{2} + a_{44} = 0 a 11 x 2 + 2 a 12 x y + 2 a 13 x y 2 + 2 a 14 x + a 22 y 2 + 2 a 23 y y 2 + 2 a 24 y + a 33 y 2 2 + 2 a 34 y 2 + a 44 = 0 where
a 11 = 0 a_{11} = 0 a 11 = 0 a 12 = 3 a_{12} = 3 a 12 = 3 a 13 = 0 a_{13} = 0 a 13 = 0 a 14 = − 3 a_{14} = -3 a 14 = − 3 a 22 = 0 a_{22} = 0 a 22 = 0 a 23 = 0 a_{23} = 0 a 23 = 0 a 24 = − 5 a_{24} = -5 a 24 = − 5 a 33 = 0 a_{33} = 0 a 33 = 0 a 34 = 5 2 a_{34} = \frac{5}{2} a 34 = 2 5 a 44 = 5 x 2 − 3 a_{44} = 5 x_{2} - 3 a 44 = 5 x 2 − 3 The invariants of the equation when converting coordinates are determinants:
I 1 = a 11 + a 22 + a 33 I_{1} = a_{11} + a_{22} + a_{33} I 1 = a 11 + a 22 + a 33 |a11 a12| |a22 a23| |a11 a13|
I2 = | | + | | + | |
|a12 a22| |a23 a33| |a13 a33| I 3 = ∣ a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 ∣ I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right| I 3 = a 11 a 12 a 13 a 12 a 22 a 23 a 13 a 23 a 33 I 4 = ∣ a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 ∣ I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right| I 4 = a 11 a 12 a 13 a 14 a 12 a 22 a 23 a 24 a 13 a 23 a 33 a 34 a 14 a 24 a 34 a 44 I ( λ ) = ∣ a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right| I ( λ ) = a 11 − λ a 12 a 13 a 12 a 22 − λ a 23 a 13 a 23 a 33 − λ |a11 a14| |a22 a24| |a33 a34|
K2 = | | + | | + | |
|a14 a44| |a24 a44| |a34 a44| |a11 a12 a14| |a22 a23 a24| |a11 a13 a14|
| | | | | |
K3 = |a12 a22 a24| + |a23 a33 a34| + |a13 a33 a34|
| | | | | |
|a14 a24 a44| |a24 a34 a44| |a14 a34 a44| substitute coefficients
I 1 = 0 I_{1} = 0 I 1 = 0 |0 3| |0 0| |0 0|
I2 = | | + | | + | |
|3 0| |0 0| |0 0| I 3 = ∣ 0 3 0 3 0 0 0 0 0 ∣ I_{3} = \left|\begin{matrix}0 & 3 & 0\\3 & 0 & 0\\0 & 0 & 0\end{matrix}\right| I 3 = 0 3 0 3 0 0 0 0 0 I 4 = ∣ 0 3 0 − 3 3 0 0 − 5 0 0 0 5 2 − 3 − 5 5 2 5 x 2 − 3 ∣ I_{4} = \left|\begin{matrix}0 & 3 & 0 & -3\\3 & 0 & 0 & -5\\0 & 0 & 0 & \frac{5}{2}\\-3 & -5 & \frac{5}{2} & 5 x_{2} - 3\end{matrix}\right| I 4 = 0 3 0 − 3 3 0 0 − 5 0 0 0 2 5 − 3 − 5 2 5 5 x 2 − 3 I ( λ ) = ∣ − λ 3 0 3 − λ 0 0 0 − λ ∣ I{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & 3 & 0\\3 & - \lambda & 0\\0 & 0 & - \lambda\end{matrix}\right| I ( λ ) = − λ 3 0 3 − λ 0 0 0 − λ |0 -3 | |0 -5 | | 0 5/2 |
K2 = | | + | | + | |
|-3 -3 + 5*x2| |-5 -3 + 5*x2| |5/2 -3 + 5*x2| |0 3 -3 | |0 0 -5 | |0 0 -3 |
| | | | | |
K3 = |3 0 -5 | + |0 0 5/2 | + |0 0 5/2 |
| | | | | |
|-3 -5 -3 + 5*x2| |-5 5/2 -3 + 5*x2| |-3 5/2 -3 + 5*x2| I 1 = 0 I_{1} = 0 I 1 = 0 I 2 = − 9 I_{2} = -9 I 2 = − 9 I 3 = 0 I_{3} = 0 I 3 = 0 I 4 = 225 4 I_{4} = \frac{225}{4} I 4 = 4 225 I ( λ ) = − λ 3 + 9 λ I{\left(\lambda \right)} = - \lambda^{3} + 9 \lambda I ( λ ) = − λ 3 + 9 λ K 2 = − 161 4 K_{2} = - \frac{161}{4} K 2 = − 4 161 K 3 = 117 − 45 x 2 K_{3} = 117 - 45 x_{2} K 3 = 117 − 45 x 2 Because
I 3 = 0 ∧ I 2 ≠ 0 ∧ I 4 ≠ 0 I_{3} = 0 \wedge I_{2} \neq 0 \wedge I_{4} \neq 0 I 3 = 0 ∧ I 2 = 0 ∧ I 4 = 0 then by type of surface:
you need to
Make the characteristic equation for the surface:
− I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 - I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0 − I 1 λ 2 + I 2 λ − I 3 + λ 3 = 0 or
λ 3 − 9 λ = 0 \lambda^{3} - 9 \lambda = 0 λ 3 − 9 λ = 0 λ 1 = − 3 \lambda_{1} = -3 λ 1 = − 3 λ 2 = 3 \lambda_{2} = 3 λ 2 = 3 λ 3 = 0 \lambda_{3} = 0 λ 3 = 0 then the canonical form of the equation will be
y ~ 2 ⋅ 2 ( − 1 ) I 4 I 2 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 \tilde y2 \cdot 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0 y ~ 2 ⋅ 2 I 2 ( − 1 ) I 4 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 and
− y ~ 2 ⋅ 2 ( − 1 ) I 4 I 2 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 - \tilde y2 \cdot 2 \sqrt{\frac{\left(-1\right) I_{4}}{I_{2}}} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right) = 0 − y ~ 2 ⋅ 2 I 2 ( − 1 ) I 4 + ( x ~ 2 λ 1 + y ~ 2 λ 2 ) = 0 − 3 x ~ 2 + 3 y ~ 2 + 5 y ~ 2 = 0 - 3 \tilde x^{2} + 3 \tilde y^{2} + 5 \tilde y2 = 0 − 3 x ~ 2 + 3 y ~ 2 + 5 y ~ 2 = 0 and
− 3 x ~ 2 + 3 y ~ 2 − 5 y ~ 2 = 0 - 3 \tilde x^{2} + 3 \tilde y^{2} - 5 \tilde y2 = 0 − 3 x ~ 2 + 3 y ~ 2 − 5 y ~ 2 = 0 − 2 y ~ 2 + ( x ~ 2 5 6 − y ~ 2 5 6 ) = 0 - 2 \tilde y2 + \left(\frac{\tilde x^{2}}{\frac{5}{6}} - \frac{\tilde y^{2}}{\frac{5}{6}}\right) = 0 − 2 y ~ 2 + ( 6 5 x ~ 2 − 6 5 y ~ 2 ) = 0 and
2 y ~ 2 + ( x ~ 2 5 6 − y ~ 2 5 6 ) = 0 2 \tilde y2 + \left(\frac{\tilde x^{2}}{\frac{5}{6}} - \frac{\tilde y^{2}}{\frac{5}{6}}\right) = 0 2 y ~ 2 + ( 6 5 x ~ 2 − 6 5 y ~ 2 ) = 0 this equation is fora type hyperbolic paraboloid
- reduced to canonical form