Mister Exam

Other calculators

4x^2+4xy+y^2-12x-6y+5=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
     2                   2            
5 + y  - 12*x - 6*y + 4*x  + 4*x*y = 0
$$4 x^{2} + 4 x y - 12 x + y^{2} - 6 y + 5 = 0$$
4*x^2 + 4*x*y - 12*x + y^2 - 6*y + 5 = 0
Detail solution
Given line equation of 2-order:
$$4 x^{2} + 4 x y - 12 x + y^{2} - 6 y + 5 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 4$$
$$a_{12} = 2$$
$$a_{13} = -6$$
$$a_{22} = 1$$
$$a_{23} = -3$$
$$a_{33} = 5$$
To calculate the determinant
$$\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|$$
or, substitute
$$\Delta = \left|\begin{matrix}4 & 2\\2 & 1\end{matrix}\right|$$
$$\Delta = 0$$
Because
$$\Delta$$
is equal to 0, then
Rotate the resulting coordinate system by an angle φ
$$x' = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y' = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
φ - determined from the formula
$$\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}$$
substitute coefficients
$$\cot{\left(2 \phi \right)} = \frac{3}{4}$$
then
$$\phi = \frac{\operatorname{acot}{\left(\frac{3}{4} \right)}}{2}$$
$$\sin{\left(2 \phi \right)} = \frac{4}{5}$$
$$\cos{\left(2 \phi \right)} = \frac{3}{5}$$
$$\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}$$
$$\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}$$
$$\cos{\left(\phi \right)} = \frac{2 \sqrt{5}}{5}$$
$$\sin{\left(\phi \right)} = \frac{\sqrt{5}}{5}$$
substitute coefficients
$$x' = \frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}$$
$$y' = \frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}$$
then the equation turns from
$$4 x'^{2} + 4 x' y' - 12 x' + y'^{2} - 6 y' + 5 = 0$$
to
$$\left(\frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}\right)^{2} + 4 \left(\frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}\right) \left(\frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}\right) - 6 \left(\frac{\sqrt{5} \tilde x}{5} + \frac{2 \sqrt{5} \tilde y}{5}\right) + 4 \left(\frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}\right)^{2} - 12 \left(\frac{2 \sqrt{5} \tilde x}{5} - \frac{\sqrt{5} \tilde y}{5}\right) + 5 = 0$$
simplify
$$5 \tilde x^{2} - 6 \sqrt{5} \tilde x + 5 = 0$$
$$5 \tilde x^{2} - 6 \sqrt{5} \tilde x = -5$$
$$\left(\sqrt{5} \tilde x - 3\right)^{2} = 9$$
$$\left(\tilde x - \frac{3 \sqrt{5}}{5}\right)^{2} = \frac{9}{5}$$
$$\tilde x'^{2} = \frac{9}{5}$$
Given equation is two parallel straight lines
- reduced to canonical form
where replacement made
$$\tilde x' = \tilde x - \frac{3 \sqrt{5}}{5}$$
$$\tilde y' = \tilde y$$
The center of the canonical coordinate system in OXY
$$x_{0} = \tilde x \cos{\left(\phi \right)} - \tilde y \sin{\left(\phi \right)}$$
$$y_{0} = \tilde x \sin{\left(\phi \right)} + \tilde y \cos{\left(\phi \right)}$$
$$x_{0} = 0 \frac{\sqrt{5}}{5} + \frac{2 \sqrt{5}}{5} \frac{3 \sqrt{5}}{5}$$
$$y_{0} = 0 \frac{2 \sqrt{5}}{5} + \frac{\sqrt{5}}{5} \frac{3 \sqrt{5}}{5}$$
$$x_{0} = \frac{6}{5}$$
$$y_{0} = \frac{3}{5}$$
The center of canonical coordinate system at point O
(6/5, 3/5)

Basis of the canonical coordinate system
$$\vec e_1 = \left( \frac{2 \sqrt{5}}{5}, \ \frac{\sqrt{5}}{5}\right)$$
$$\vec e_2 = \left( - \frac{\sqrt{5}}{5}, \ \frac{2 \sqrt{5}}{5}\right)$$
Invariants method
Given line equation of 2-order:
$$4 x^{2} + 4 x y - 12 x + y^{2} - 6 y + 5 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x + a_{22} y^{2} + 2 a_{23} y + a_{33} = 0$$
where
$$a_{11} = 4$$
$$a_{12} = 2$$
$$a_{13} = -6$$
$$a_{22} = 1$$
$$a_{23} = -3$$
$$a_{33} = 5$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22}$$
     |a11  a12|
I2 = |        |
     |a12  a22|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|$$
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
$$I_{1} = 5$$
     |4  2|
I2 = |    |
     |2  1|

$$I_{3} = \left|\begin{matrix}4 & 2 & -6\\2 & 1 & -3\\-6 & -3 & 5\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}4 - \lambda & 2\\2 & 1 - \lambda\end{matrix}\right|$$
     |4   -6|   |1   -3|
K2 = |      | + |      |
     |-6  5 |   |-3  5 |

$$I_{1} = 5$$
$$I_{2} = 0$$
$$I_{3} = 0$$
$$I{\left(\lambda \right)} = \lambda^{2} - 5 \lambda$$
$$K_{2} = -20$$
Because
$$I_{2} = 0 \wedge I_{3} = 0 \wedge K_{2} < 0 \wedge I_{1} \neq 0$$
then by line type:
this equation is of type : two parallel lines
$$I_{1} \tilde y^{2} + \frac{K_{2}}{I_{1}} = 0$$
or
$$5 \tilde y^{2} - 4 = 0$$
None

- reduced to canonical form