Mister Exam

Other calculators

36x^2+16y^2+9z^2+72x-128y-36z+184=0 canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
                        2       2       2           
184 - 128*y - 36*z + 9*z  + 16*y  + 36*x  + 72*x = 0
$$36 x^{2} + 72 x + 16 y^{2} - 128 y + 9 z^{2} - 36 z + 184 = 0$$
36*x^2 + 72*x + 16*y^2 - 128*y + 9*z^2 - 36*z + 184 = 0
Invariants method
Given equation of the surface of 2-order:
$$36 x^{2} + 72 x + 16 y^{2} - 128 y + 9 z^{2} - 36 z + 184 = 0$$
This equation looks like:
$$a_{11} x^{2} + 2 a_{12} x y + 2 a_{13} x z + 2 a_{14} x + a_{22} y^{2} + 2 a_{23} y z + 2 a_{24} y + a_{33} z^{2} + 2 a_{34} z + a_{44} = 0$$
where
$$a_{11} = 36$$
$$a_{12} = 0$$
$$a_{13} = 0$$
$$a_{14} = 36$$
$$a_{22} = 16$$
$$a_{23} = 0$$
$$a_{24} = -64$$
$$a_{33} = 9$$
$$a_{34} = -18$$
$$a_{44} = 184$$
The invariants of the equation when converting coordinates are determinants:
$$I_{1} = a_{11} + a_{22} + a_{33}$$
     |a11  a12|   |a22  a23|   |a11  a13|
I2 = |        | + |        | + |        |
     |a12  a22|   |a23  a33|   |a13  a33|

$$I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}a_{11} & a_{12} & a_{13} & a_{14}\\a_{12} & a_{22} & a_{23} & a_{24}\\a_{13} & a_{23} & a_{33} & a_{34}\\a_{14} & a_{24} & a_{34} & a_{44}\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12} & a_{13}\\a_{12} & a_{22} - \lambda & a_{23}\\a_{13} & a_{23} & a_{33} - \lambda\end{matrix}\right|$$
     |a11  a14|   |a22  a24|   |a33  a34|
K2 = |        | + |        | + |        |
     |a14  a44|   |a24  a44|   |a34  a44|

     |a11  a12  a14|   |a22  a23  a24|   |a11  a13  a14|
     |             |   |             |   |             |
K3 = |a12  a22  a24| + |a23  a33  a34| + |a13  a33  a34|
     |             |   |             |   |             |
     |a14  a24  a44|   |a24  a34  a44|   |a14  a34  a44|

substitute coefficients
$$I_{1} = 61$$
     |36  0 |   |16  0|   |36  0|
I2 = |      | + |     | + |     |
     |0   16|   |0   9|   |0   9|

$$I_{3} = \left|\begin{matrix}36 & 0 & 0\\0 & 16 & 0\\0 & 0 & 9\end{matrix}\right|$$
$$I_{4} = \left|\begin{matrix}36 & 0 & 0 & 36\\0 & 16 & 0 & -64\\0 & 0 & 9 & -18\\36 & -64 & -18 & 184\end{matrix}\right|$$
$$I{\left(\lambda \right)} = \left|\begin{matrix}36 - \lambda & 0 & 0\\0 & 16 - \lambda & 0\\0 & 0 & 9 - \lambda\end{matrix}\right|$$
     |36  36 |   |16   -64|   | 9   -18|
K2 = |       | + |        | + |        |
     |36  184|   |-64  184|   |-18  184|

     |36   0   36 |   |16    0   -64|   |36   0   36 |
     |            |   |             |   |            |
K3 = |0   16   -64| + | 0    9   -18| + |0    9   -18|
     |            |   |             |   |            |
     |36  -64  184|   |-64  -18  184|   |36  -18  184|

$$I_{1} = 61$$
$$I_{2} = 1044$$
$$I_{3} = 5184$$
$$I_{4} = -746496$$
$$I{\left(\lambda \right)} = - \lambda^{3} + 61 \lambda^{2} - 1044 \lambda + 5184$$
$$K_{2} = 5508$$
$$K_{3} = -41472$$
Because
I3 != 0

then by type of surface:
you need to
Make the characteristic equation for the surface:
$$- I_{1} \lambda^{2} + I_{2} \lambda - I_{3} + \lambda^{3} = 0$$
or
$$\lambda^{3} - 61 \lambda^{2} + 1044 \lambda - 5184 = 0$$
$$\lambda_{1} = 36$$
$$\lambda_{2} = 16$$
$$\lambda_{3} = 9$$
then the canonical form of the equation will be
$$\left(\tilde z^{2} \lambda_{3} + \left(\tilde x^{2} \lambda_{1} + \tilde y^{2} \lambda_{2}\right)\right) + \frac{I_{4}}{I_{3}} = 0$$
$$36 \tilde x^{2} + 16 \tilde y^{2} + 9 \tilde z^{2} - 144 = 0$$
        2           2           2    
\tilde x    \tilde y    \tilde z     
--------- + --------- + --------- = 1
        2           2           2    
/  1   \    /  1   \    /  1   \     
|------|    |------|    |------|     
\6*1/12/    \4*1/12/    \3*1/12/     

this equation is fora type ellipsoid
- reduced to canonical form