Mister Exam

Other calculators


pi^(2*n)/factorial(2*n)
  • How to use it?

  • Sum of series:
  • 1/(n(n+1)(n+2)) 1/(n(n+1)(n+2))
  • 1/3^n 1/3^n
  • 1/(3n-2)(3n+1) 1/(3n-2)(3n+1)
  • (x-1)^n/5^n
  • Identical expressions

  • pi^(two *n)/factorial(two *n)
  • Pi to the power of (2 multiply by n) divide by factorial(2 multiply by n)
  • Pi to the power of (two multiply by n) divide by factorial(two multiply by n)
  • pi(2*n)/factorial(2*n)
  • pi2*n/factorial2*n
  • pi^(2n)/factorial(2n)
  • pi(2n)/factorial(2n)
  • pi2n/factorial2n
  • pi^2n/factorial2n
  • pi^(2*n) divide by factorial(2*n)

Sum of series pi^(2*n)/factorial(2*n)



=

The solution

You have entered [src]
  oo        
____        
\   `       
 \      2*n 
  \   pi    
  /   ------
 /    (2*n)!
/___,       
n = 1       
$$\sum_{n=1}^{\infty} \frac{\pi^{2 n}}{\left(2 n\right)!}$$
Sum(pi^(2*n)/factorial(2*n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\pi^{2 n}}{\left(2 n\right)!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\left(2 n\right)!}$$
and
$$x_{0} = - \pi$$
,
$$d = 2$$
,
$$c = 0$$
then
$$R^{2} = \tilde{\infty} \left(- \pi + \lim_{n \to \infty} \left|{\frac{\left(2 n + 2\right)!}{\left(2 n\right)!}}\right|\right)$$
Let's take the limit
we find
$$R^{2} = \infty$$
$$R = \infty$$
The rate of convergence of the power series
The answer [src]
  2 /   2    2*cosh(pi)\
pi *|- --- + ----------|
    |    2        2    |
    \  pi       pi     /
------------------------
           2            
$$\frac{\pi^{2} \left(- \frac{2}{\pi^{2}} + \frac{2 \cosh{\left(\pi \right)}}{\pi^{2}}\right)}{2}$$
pi^2*(-2/pi^2 + 2*cosh(pi)/pi^2)/2
Numerical answer [src]
10.5919532755215206277517520526
10.5919532755215206277517520526
The graph
Sum of series pi^(2*n)/factorial(2*n)

    Examples of finding the sum of a series