The perfect square
Let's highlight the perfect square of the square three-member
$$6 b^{2} + \left(b 5 y + y^{2}\right)$$
Let us write down the identical expression
$$6 b^{2} + \left(b 5 y + y^{2}\right) = - \frac{y^{2}}{24} + \left(6 b^{2} + 5 b y + \frac{25 y^{2}}{24}\right)$$
or
$$6 b^{2} + \left(b 5 y + y^{2}\right) = - \frac{y^{2}}{24} + \left(\sqrt{6} b + \frac{5 \sqrt{6} y}{12}\right)^{2}$$
in the view of the product
$$\left(- \frac{y}{2 \sqrt{6}} + \left(\sqrt{6} b + \frac{5 \sqrt{6}}{12} y\right)\right) \left(\frac{y}{2 \sqrt{6}} + \left(\sqrt{6} b + \frac{5 \sqrt{6}}{12} y\right)\right)$$
$$\left(- \frac{\sqrt{6}}{12} y + \left(\sqrt{6} b + \frac{5 \sqrt{6}}{12} y\right)\right) \left(\frac{\sqrt{6}}{12} y + \left(\sqrt{6} b + \frac{5 \sqrt{6}}{12} y\right)\right)$$
$$\left(\sqrt{6} b + y \left(- \frac{\sqrt{6}}{12} + \frac{5 \sqrt{6}}{12}\right)\right) \left(\sqrt{6} b + y \left(\frac{\sqrt{6}}{12} + \frac{5 \sqrt{6}}{12}\right)\right)$$
$$\left(\sqrt{6} b + \frac{\sqrt{6} y}{3}\right) \left(\sqrt{6} b + \frac{\sqrt{6} y}{2}\right)$$
/ y\ / y\
|b + -|*|b + -|
\ 2/ \ 3/
$$\left(b + \frac{y}{3}\right) \left(b + \frac{y}{2}\right)$$
General simplification
[src]
$$6 b^{2} + 5 b y + y^{2}$$
Assemble expression
[src]
$$6 b^{2} + 5 b y + y^{2}$$
$$6 b^{2} + 5 b y + y^{2}$$
$$\left(2 b + y\right) \left(3 b + y\right)$$
Combining rational expressions
[src]
$$6 b^{2} + y \left(5 b + y\right)$$
$$6 b^{2} + 5 b y + y^{2}$$
Rational denominator
[src]
$$6 b^{2} + 5 b y + y^{2}$$
$$6 b^{2} + 5 b y + y^{2}$$