General simplification
[src]
$$4 x^{2} - 7 x y + y^{2}$$
The perfect square
Let's highlight the perfect square of the square three-member
$$4 x^{2} + \left(- x 7 y + y^{2}\right)$$
Let us write down the identical expression
$$4 x^{2} + \left(- x 7 y + y^{2}\right) = - \frac{33 y^{2}}{16} + \left(4 x^{2} - 7 x y + \frac{49 y^{2}}{16}\right)$$
or
$$4 x^{2} + \left(- x 7 y + y^{2}\right) = - \frac{33 y^{2}}{16} + \left(2 x - \frac{7 y}{4}\right)^{2}$$
in the view of the product
$$\left(- \sqrt{\frac{33}{16}} y + \left(2 x - \frac{7 y}{4}\right)\right) \left(\sqrt{\frac{33}{16}} y + \left(2 x - \frac{7 y}{4}\right)\right)$$
$$\left(- \frac{\sqrt{33}}{4} y + \left(2 x - \frac{7 y}{4}\right)\right) \left(\frac{\sqrt{33}}{4} y + \left(2 x - \frac{7 y}{4}\right)\right)$$
$$\left(2 x + y \left(- \frac{7}{4} - \frac{\sqrt{33}}{4}\right)\right) \left(2 x + y \left(- \frac{7}{4} + \frac{\sqrt{33}}{4}\right)\right)$$
$$\left(2 x + y \left(- \frac{7}{4} - \frac{\sqrt{33}}{4}\right)\right) \left(2 x + y \left(- \frac{7}{4} + \frac{\sqrt{33}}{4}\right)\right)$$
/ / ____\\ / / ____\\
| y*\7 - \/ 33 /| | y*\7 + \/ 33 /|
|x - --------------|*|x - --------------|
\ 8 / \ 8 /
$$\left(x - \frac{y \left(7 - \sqrt{33}\right)}{8}\right) \left(x - \frac{y \left(\sqrt{33} + 7\right)}{8}\right)$$
(x - y*(7 - sqrt(33))/8)*(x - y*(7 + sqrt(33))/8)
Assemble expression
[src]
$$4 x^{2} - 7 x y + y^{2}$$
Rational denominator
[src]
$$4 x^{2} - 7 x y + y^{2}$$
$$4 x^{2} - 7 x y + y^{2}$$
Combining rational expressions
[src]
$$4 x^{2} + y \left(- 7 x + y\right)$$
$$4 x^{2} - 7 x y + y^{2}$$
$$4 x^{2} - 7 x y + y^{2}$$
$$4 x^{2} - 7 x y + y^{2}$$