Mister Exam

Factor y^4+5*y^2+1 squared

An expression to simplify:

The solution

You have entered [src]
 4      2    
y  + 5*y  + 1
$$\left(y^{4} + 5 y^{2}\right) + 1$$
y^4 + 5*y^2 + 1
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(y^{4} + 5 y^{2}\right) + 1$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = 5$$
$$c = 1$$
Then
$$m = \frac{5}{2}$$
$$n = - \frac{21}{4}$$
So,
$$\left(y^{2} + \frac{5}{2}\right)^{2} - \frac{21}{4}$$
General simplification [src]
     4      2
1 + y  + 5*y 
$$y^{4} + 5 y^{2} + 1$$
1 + y^4 + 5*y^2
Factorization [src]
/           ____________\ /           ____________\ /           ____________\ /           ____________\
|          /       ____ | |          /       ____ | |          /       ____ | |          /       ____ |
|         /  5   \/ 21  | |         /  5   \/ 21  | |         /  5   \/ 21  | |         /  5   \/ 21  |
|x + I*  /   - - ------ |*|x - I*  /   - - ------ |*|x + I*  /   - + ------ |*|x - I*  /   - + ------ |
\      \/    2     2    / \      \/    2     2    / \      \/    2     2    / \      \/    2     2    /
$$\left(x - i \sqrt{\frac{5}{2} - \frac{\sqrt{21}}{2}}\right) \left(x + i \sqrt{\frac{5}{2} - \frac{\sqrt{21}}{2}}\right) \left(x + i \sqrt{\frac{\sqrt{21}}{2} + \frac{5}{2}}\right) \left(x - i \sqrt{\frac{\sqrt{21}}{2} + \frac{5}{2}}\right)$$
(((x + i*sqrt(5/2 - sqrt(21)/2))*(x - i*sqrt(5/2 - sqrt(21)/2)))*(x + i*sqrt(5/2 + sqrt(21)/2)))*(x - i*sqrt(5/2 + sqrt(21)/2))
Common denominator [src]
     4      2
1 + y  + 5*y 
$$y^{4} + 5 y^{2} + 1$$
1 + y^4 + 5*y^2
Assemble expression [src]
     4      2
1 + y  + 5*y 
$$y^{4} + 5 y^{2} + 1$$
1 + y^4 + 5*y^2
Numerical answer [src]
1.0 + y^4 + 5.0*y^2
1.0 + y^4 + 5.0*y^2
Rational denominator [src]
     4      2
1 + y  + 5*y 
$$y^{4} + 5 y^{2} + 1$$
1 + y^4 + 5*y^2
Trigonometric part [src]
     4      2
1 + y  + 5*y 
$$y^{4} + 5 y^{2} + 1$$
1 + y^4 + 5*y^2
Combinatorics [src]
     4      2
1 + y  + 5*y 
$$y^{4} + 5 y^{2} + 1$$
1 + y^4 + 5*y^2
Combining rational expressions [src]
     2 /     2\
1 + y *\5 + y /
$$y^{2} \left(y^{2} + 5\right) + 1$$
1 + y^2*(5 + y^2)
Powers [src]
     4      2
1 + y  + 5*y 
$$y^{4} + 5 y^{2} + 1$$
1 + y^4 + 5*y^2