Mister Exam

Other calculators

Factor y^4-5*y^2+15 squared

An expression to simplify:

The solution

You have entered [src]
 4      2     
y  - 5*y  + 15
$$\left(y^{4} - 5 y^{2}\right) + 15$$
y^4 - 5*y^2 + 15
General simplification [src]
      4      2
15 + y  - 5*y 
$$y^{4} - 5 y^{2} + 15$$
15 + y^4 - 5*y^2
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(y^{4} - 5 y^{2}\right) + 15$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -5$$
$$c = 15$$
Then
$$m = - \frac{5}{2}$$
$$n = \frac{35}{4}$$
So,
$$\left(y^{2} - \frac{5}{2}\right)^{2} + \frac{35}{4}$$
Factorization [src]
/              /    /  ____\\               /    /  ____\\\ /              /    /  ____\\               /    /  ____\\\ /                /    /  ____\\               /    /  ____\\\ /                /    /  ____\\               /    /  ____\\\
|              |    |\/ 35 ||               |    |\/ 35 ||| |              |    |\/ 35 ||               |    |\/ 35 ||| |                |    |\/ 35 ||               |    |\/ 35 ||| |                |    |\/ 35 ||               |    |\/ 35 |||
|              |atan|------||               |atan|------||| |              |atan|------||               |atan|------||| |                |atan|------||               |atan|------||| |                |atan|------||               |atan|------|||
|    4 ____    |    \  5   /|     4 ____    |    \  5   /|| |    4 ____    |    \  5   /|     4 ____    |    \  5   /|| |      4 ____    |    \  5   /|     4 ____    |    \  5   /|| |      4 ____    |    \  5   /|     4 ____    |    \  5   /||
|x + \/ 15 *cos|------------| + I*\/ 15 *sin|------------||*|x + \/ 15 *cos|------------| - I*\/ 15 *sin|------------||*|x + - \/ 15 *cos|------------| + I*\/ 15 *sin|------------||*|x + - \/ 15 *cos|------------| - I*\/ 15 *sin|------------||
\              \     2      /               \     2      // \              \     2      /               \     2      // \                \     2      /               \     2      // \                \     2      /               \     2      //
$$\left(x + \left(\sqrt[4]{15} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{35}}{5} \right)}}{2} \right)} - \sqrt[4]{15} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{35}}{5} \right)}}{2} \right)}\right)\right) \left(x + \left(\sqrt[4]{15} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{35}}{5} \right)}}{2} \right)} + \sqrt[4]{15} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{35}}{5} \right)}}{2} \right)}\right)\right) \left(x + \left(- \sqrt[4]{15} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{35}}{5} \right)}}{2} \right)} + \sqrt[4]{15} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{35}}{5} \right)}}{2} \right)}\right)\right) \left(x + \left(- \sqrt[4]{15} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{35}}{5} \right)}}{2} \right)} - \sqrt[4]{15} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{35}}{5} \right)}}{2} \right)}\right)\right)$$
(((x + 15^(1/4)*cos(atan(sqrt(35)/5)/2) + i*15^(1/4)*sin(atan(sqrt(35)/5)/2))*(x + 15^(1/4)*cos(atan(sqrt(35)/5)/2) - i*15^(1/4)*sin(atan(sqrt(35)/5)/2)))*(x - 15^(1/4)*cos(atan(sqrt(35)/5)/2) + i*15^(1/4)*sin(atan(sqrt(35)/5)/2)))*(x - 15^(1/4)*cos(atan(sqrt(35)/5)/2) - i*15^(1/4)*sin(atan(sqrt(35)/5)/2))
Numerical answer [src]
15.0 + y^4 - 5.0*y^2
15.0 + y^4 - 5.0*y^2
Combinatorics [src]
      4      2
15 + y  - 5*y 
$$y^{4} - 5 y^{2} + 15$$
15 + y^4 - 5*y^2
Combining rational expressions [src]
      2 /      2\
15 + y *\-5 + y /
$$y^{2} \left(y^{2} - 5\right) + 15$$
15 + y^2*(-5 + y^2)
Assemble expression [src]
      4      2
15 + y  - 5*y 
$$y^{4} - 5 y^{2} + 15$$
15 + y^4 - 5*y^2
Powers [src]
      4      2
15 + y  - 5*y 
$$y^{4} - 5 y^{2} + 15$$
15 + y^4 - 5*y^2
Common denominator [src]
      4      2
15 + y  - 5*y 
$$y^{4} - 5 y^{2} + 15$$
15 + y^4 - 5*y^2
Rational denominator [src]
      4      2
15 + y  - 5*y 
$$y^{4} - 5 y^{2} + 15$$
15 + y^4 - 5*y^2
Trigonometric part [src]
      4      2
15 + y  - 5*y 
$$y^{4} - 5 y^{2} + 15$$
15 + y^4 - 5*y^2