General simplification
[src]
$$x^{2} + x - 20$$
$$\left(x - 4\right) \left(x + 5\right)$$
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(x^{2} + x\right) - 20$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = 1$$
$$c = -20$$
Then
$$m = \frac{1}{2}$$
$$n = - \frac{81}{4}$$
So,
$$\left(x + \frac{1}{2}\right)^{2} - \frac{81}{4}$$
Rational denominator
[src]
$$x^{2} + x - 20$$
Combining rational expressions
[src]
$$x \left(x + 1\right) - 20$$
Assemble expression
[src]
$$x^{2} + x - 20$$
$$\left(x - 4\right) \left(x + 5\right)$$