Mister Exam

Factor x^2-9*x-10 squared

An expression to simplify:

The solution

You have entered [src]
 2           
x  - 9*x - 10
$$\left(x^{2} - 9 x\right) - 10$$
x^2 - 9*x - 10
Factorization [src]
(x + 1)*(x - 10)
$$\left(x - 10\right) \left(x + 1\right)$$
(x + 1)*(x - 10)
General simplification [src]
       2      
-10 + x  - 9*x
$$x^{2} - 9 x - 10$$
-10 + x^2 - 9*x
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(x^{2} - 9 x\right) - 10$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -9$$
$$c = -10$$
Then
$$m = - \frac{9}{2}$$
$$n = - \frac{121}{4}$$
So,
$$\left(x - \frac{9}{2}\right)^{2} - \frac{121}{4}$$
Assemble expression [src]
       2      
-10 + x  - 9*x
$$x^{2} - 9 x - 10$$
-10 + x^2 - 9*x
Combinatorics [src]
(1 + x)*(-10 + x)
$$\left(x - 10\right) \left(x + 1\right)$$
(1 + x)*(-10 + x)
Trigonometric part [src]
       2      
-10 + x  - 9*x
$$x^{2} - 9 x - 10$$
-10 + x^2 - 9*x
Powers [src]
       2      
-10 + x  - 9*x
$$x^{2} - 9 x - 10$$
-10 + x^2 - 9*x
Numerical answer [src]
-10.0 + x^2 - 9.0*x
-10.0 + x^2 - 9.0*x
Common denominator [src]
       2      
-10 + x  - 9*x
$$x^{2} - 9 x - 10$$
-10 + x^2 - 9*x
Rational denominator [src]
       2      
-10 + x  - 9*x
$$x^{2} - 9 x - 10$$
-10 + x^2 - 9*x
Combining rational expressions [src]
-10 + x*(-9 + x)
$$x \left(x - 9\right) - 10$$
-10 + x*(-9 + x)