Mister Exam

Factor 9*b^2-6*a*b+a^2 squared

An expression to simplify:

The solution

You have entered [src]
   2            2
9*b  - 6*a*b + a 
$$a^{2} + \left(- 6 a b + 9 b^{2}\right)$$
9*b^2 - 6*a*b + a^2
The perfect square
Let's highlight the perfect square of the square three-member
$$a^{2} + \left(- 6 a b + 9 b^{2}\right)$$
Let us write down the identical expression
$$a^{2} + \left(- 6 a b + 9 b^{2}\right) = 0 b^{2} + \left(a^{2} - 6 a b + 9 b^{2}\right)$$
or
$$a^{2} + \left(- 6 a b + 9 b^{2}\right) = 0 b^{2} + \left(a - 3 b\right)^{2}$$
Factorization [src]
a - 3*b
$$a - 3 b$$
a - 3*b
General simplification [src]
 2      2        
a  + 9*b  - 6*a*b
$$a^{2} - 6 a b + 9 b^{2}$$
a^2 + 9*b^2 - 6*a*b
Common denominator [src]
 2      2        
a  + 9*b  - 6*a*b
$$a^{2} - 6 a b + 9 b^{2}$$
a^2 + 9*b^2 - 6*a*b
Trigonometric part [src]
 2      2        
a  + 9*b  - 6*a*b
$$a^{2} - 6 a b + 9 b^{2}$$
a^2 + 9*b^2 - 6*a*b
Assemble expression [src]
 2      2        
a  + 9*b  - 6*a*b
$$a^{2} - 6 a b + 9 b^{2}$$
a^2 + 9*b^2 - 6*a*b
Combining rational expressions [src]
 2                   
a  + 3*b*(-2*a + 3*b)
$$a^{2} + 3 b \left(- 2 a + 3 b\right)$$
a^2 + 3*b*(-2*a + 3*b)
Numerical answer [src]
a^2 + 9.0*b^2 - 6.0*a*b
a^2 + 9.0*b^2 - 6.0*a*b
Combinatorics [src]
         2
(a - 3*b) 
$$\left(a - 3 b\right)^{2}$$
(a - 3*b)^2
Rational denominator [src]
 2      2        
a  + 9*b  - 6*a*b
$$a^{2} - 6 a b + 9 b^{2}$$
a^2 + 9*b^2 - 6*a*b
Powers [src]
 2      2        
a  + 9*b  - 6*a*b
$$a^{2} - 6 a b + 9 b^{2}$$
a^2 + 9*b^2 - 6*a*b