Mister Exam

Factor -y^2+y+3 squared

An expression to simplify:

The solution

You have entered [src]
   2        
- y  + y + 3
(y2+y)+3\left(- y^{2} + y\right) + 3
-y^2 + y + 3
General simplification [src]
         2
3 + y - y 
y2+y+3- y^{2} + y + 3
3 + y - y^2
The perfect square
Let's highlight the perfect square of the square three-member
(y2+y)+3\left(- y^{2} + y\right) + 3
To do this, let's use the formula
ay2+by+c=a(m+y)2+na y^{2} + b y + c = a \left(m + y\right)^{2} + n
where
m=b2am = \frac{b}{2 a}
n=4acb24an = \frac{4 a c - b^{2}}{4 a}
In this case
a=1a = -1
b=1b = 1
c=3c = 3
Then
m=12m = - \frac{1}{2}
n=134n = \frac{13}{4}
So,
134(y12)2\frac{13}{4} - \left(y - \frac{1}{2}\right)^{2}
Factorization [src]
/            ____\ /            ____\
|      1   \/ 13 | |      1   \/ 13 |
|x + - - + ------|*|x + - - - ------|
\      2     2   / \      2     2   /
(x+(12+132))(x+(13212))\left(x + \left(- \frac{1}{2} + \frac{\sqrt{13}}{2}\right)\right) \left(x + \left(- \frac{\sqrt{13}}{2} - \frac{1}{2}\right)\right)
(x - 1/2 + sqrt(13)/2)*(x - 1/2 - sqrt(13)/2)
Numerical answer [src]
3.0 + y - y^2
3.0 + y - y^2
Assemble expression [src]
         2
3 + y - y 
y2+y+3- y^{2} + y + 3
3 + y - y^2
Combinatorics [src]
         2
3 + y - y 
y2+y+3- y^{2} + y + 3
3 + y - y^2
Common denominator [src]
         2
3 + y - y 
y2+y+3- y^{2} + y + 3
3 + y - y^2
Powers [src]
         2
3 + y - y 
y2+y+3- y^{2} + y + 3
3 + y - y^2
Combining rational expressions [src]
3 + y*(1 - y)
y(1y)+3y \left(1 - y\right) + 3
3 + y*(1 - y)
Trigonometric part [src]
         2
3 + y - y 
y2+y+3- y^{2} + y + 3
3 + y - y^2
Rational denominator [src]
         2
3 + y - y 
y2+y+3- y^{2} + y + 3
3 + y - y^2