General simplification
[src]
$$11 x^{2} + 7 x y - y^{2}$$
The perfect square
Let's highlight the perfect square of the square three-member
$$11 x^{2} + \left(x 7 y - y^{2}\right)$$
Let us write down the identical expression
$$11 x^{2} + \left(x 7 y - y^{2}\right) = - \frac{93 y^{2}}{44} + \left(11 x^{2} + 7 x y + \frac{49 y^{2}}{44}\right)$$
or
$$11 x^{2} + \left(x 7 y - y^{2}\right) = - \frac{93 y^{2}}{44} + \left(\sqrt{11} x + \frac{7 \sqrt{11} y}{22}\right)^{2}$$
in the view of the product
$$\left(- \sqrt{\frac{93}{44}} y + \left(\sqrt{11} x + \frac{7 \sqrt{11}}{22} y\right)\right) \left(\sqrt{\frac{93}{44}} y + \left(\sqrt{11} x + \frac{7 \sqrt{11}}{22} y\right)\right)$$
$$\left(- \frac{\sqrt{1023}}{22} y + \left(\sqrt{11} x + \frac{7 \sqrt{11}}{22} y\right)\right) \left(\frac{\sqrt{1023}}{22} y + \left(\sqrt{11} x + \frac{7 \sqrt{11}}{22} y\right)\right)$$
$$\left(\sqrt{11} x + y \left(- \frac{\sqrt{1023}}{22} + \frac{7 \sqrt{11}}{22}\right)\right) \left(\sqrt{11} x + y \left(\frac{7 \sqrt{11}}{22} + \frac{\sqrt{1023}}{22}\right)\right)$$
$$\left(\sqrt{11} x + y \left(- \frac{\sqrt{1023}}{22} + \frac{7 \sqrt{11}}{22}\right)\right) \left(\sqrt{11} x + y \left(\frac{7 \sqrt{11}}{22} + \frac{\sqrt{1023}}{22}\right)\right)$$
/ / ____\\ / / ____\\
| y*\-7 + \/ 93 /| | y*\7 + \/ 93 /|
|x - ---------------|*|x + --------------|
\ 22 / \ 22 /
$$\left(x - \frac{y \left(-7 + \sqrt{93}\right)}{22}\right) \left(x + \frac{y \left(7 + \sqrt{93}\right)}{22}\right)$$
(x - y*(-7 + sqrt(93))/22)*(x + y*(7 + sqrt(93))/22)
Rational denominator
[src]
$$11 x^{2} + 7 x y - y^{2}$$
Assemble expression
[src]
$$11 x^{2} + 7 x y - y^{2}$$
$$11 x^{2} + 7 x y - y^{2}$$
Combining rational expressions
[src]
$$11 x^{2} + y \left(7 x - y\right)$$
$$11 x^{2} + 7 x y - y^{2}$$
-y^2 + 11.0*x^2 + 7.0*x*y
-y^2 + 11.0*x^2 + 7.0*x*y
$$11 x^{2} + 7 x y - y^{2}$$
$$11 x^{2} + 7 x y - y^{2}$$