Mister Exam

Other calculators

Factor -y^2-13*y*x-4*x^2 squared

An expression to simplify:

The solution

You have entered [src]
   2               2
- y  - 13*y*x - 4*x 
$$- 4 x^{2} + \left(- x 13 y - y^{2}\right)$$
-y^2 - 13*y*x - 4*x^2
The perfect square
Let's highlight the perfect square of the square three-member
$$- 4 x^{2} + \left(- x 13 y - y^{2}\right)$$
Let us write down the identical expression
$$- 4 x^{2} + \left(- x 13 y - y^{2}\right) = \frac{153 y^{2}}{16} + \left(- 4 x^{2} - 13 x y - \frac{169 y^{2}}{16}\right)$$
or
$$- 4 x^{2} + \left(- x 13 y - y^{2}\right) = \frac{153 y^{2}}{16} - \left(2 x + \frac{13 y}{4}\right)^{2}$$
General simplification [src]
   2      2         
- y  - 4*x  - 13*x*y
$$- 4 x^{2} - 13 x y - y^{2}$$
-y^2 - 4*x^2 - 13*x*y
Factorization [src]
/      /          ____\\ /      /         ____\\
|    y*\-13 + 3*\/ 17 /| |    y*\13 + 3*\/ 17 /|
|x - ------------------|*|x + -----------------|
\            8         / \            8        /
$$\left(x - \frac{y \left(-13 + 3 \sqrt{17}\right)}{8}\right) \left(x + \frac{y \left(3 \sqrt{17} + 13\right)}{8}\right)$$
(x - y*(-13 + 3*sqrt(17))/8)*(x + y*(13 + 3*sqrt(17))/8)
Assemble expression [src]
   2      2         
- y  - 4*x  - 13*x*y
$$- 4 x^{2} - 13 x y - y^{2}$$
-y^2 - 4*x^2 - 13*x*y
Trigonometric part [src]
   2      2         
- y  - 4*x  - 13*x*y
$$- 4 x^{2} - 13 x y - y^{2}$$
-y^2 - 4*x^2 - 13*x*y
Combinatorics [src]
   2      2         
- y  - 4*x  - 13*x*y
$$- 4 x^{2} - 13 x y - y^{2}$$
-y^2 - 4*x^2 - 13*x*y
Numerical answer [src]
-y^2 - 4.0*x^2 - 13.0*x*y
-y^2 - 4.0*x^2 - 13.0*x*y
Combining rational expressions [src]
     2                
- 4*x  + y*(-y - 13*x)
$$- 4 x^{2} + y \left(- 13 x - y\right)$$
-4*x^2 + y*(-y - 13*x)
Powers [src]
   2      2         
- y  - 4*x  - 13*x*y
$$- 4 x^{2} - 13 x y - y^{2}$$
-y^2 - 4*x^2 - 13*x*y
Rational denominator [src]
   2      2         
- y  - 4*x  - 13*x*y
$$- 4 x^{2} - 13 x y - y^{2}$$
-y^2 - 4*x^2 - 13*x*y
Common denominator [src]
   2      2         
- y  - 4*x  - 13*x*y
$$- 4 x^{2} - 13 x y - y^{2}$$
-y^2 - 4*x^2 - 13*x*y