Mister Exam

Other calculators

Factor -y^2-7*y*x-5*x^2 squared

An expression to simplify:

The solution

You have entered [src]
   2              2
- y  - 7*y*x - 5*x 
$$- 5 x^{2} + \left(- x 7 y - y^{2}\right)$$
-y^2 - 7*y*x - 5*x^2
General simplification [src]
   2      2        
- y  - 5*x  - 7*x*y
$$- 5 x^{2} - 7 x y - y^{2}$$
-y^2 - 5*x^2 - 7*x*y
Factorization [src]
/      /       ____\\ /      /      ____\\
|    y*\-7 + \/ 29 /| |    y*\7 + \/ 29 /|
|x - ---------------|*|x + --------------|
\           10      / \          10      /
$$\left(x - \frac{y \left(-7 + \sqrt{29}\right)}{10}\right) \left(x + \frac{y \left(\sqrt{29} + 7\right)}{10}\right)$$
(x - y*(-7 + sqrt(29))/10)*(x + y*(7 + sqrt(29))/10)
The perfect square
Let's highlight the perfect square of the square three-member
$$- 5 x^{2} + \left(- x 7 y - y^{2}\right)$$
Let us write down the identical expression
$$- 5 x^{2} + \left(- x 7 y - y^{2}\right) = \frac{29 y^{2}}{20} + \left(- 5 x^{2} - 7 x y - \frac{49 y^{2}}{20}\right)$$
or
$$- 5 x^{2} + \left(- x 7 y - y^{2}\right) = \frac{29 y^{2}}{20} - \left(\sqrt{5} x + \frac{7 \sqrt{5} y}{10}\right)^{2}$$
Trigonometric part [src]
   2      2        
- y  - 5*x  - 7*x*y
$$- 5 x^{2} - 7 x y - y^{2}$$
-y^2 - 5*x^2 - 7*x*y
Assemble expression [src]
   2      2        
- y  - 5*x  - 7*x*y
$$- 5 x^{2} - 7 x y - y^{2}$$
-y^2 - 5*x^2 - 7*x*y
Numerical answer [src]
-y^2 - 5.0*x^2 - 7.0*x*y
-y^2 - 5.0*x^2 - 7.0*x*y
Rational denominator [src]
   2      2        
- y  - 5*x  - 7*x*y
$$- 5 x^{2} - 7 x y - y^{2}$$
-y^2 - 5*x^2 - 7*x*y
Powers [src]
   2      2        
- y  - 5*x  - 7*x*y
$$- 5 x^{2} - 7 x y - y^{2}$$
-y^2 - 5*x^2 - 7*x*y
Combining rational expressions [src]
     2               
- 5*x  + y*(-y - 7*x)
$$- 5 x^{2} + y \left(- 7 x - y\right)$$
-5*x^2 + y*(-y - 7*x)
Common denominator [src]
   2      2        
- y  - 5*x  - 7*x*y
$$- 5 x^{2} - 7 x y - y^{2}$$
-y^2 - 5*x^2 - 7*x*y
Combinatorics [src]
   2      2        
- y  - 5*x  - 7*x*y
$$- 5 x^{2} - 7 x y - y^{2}$$
-y^2 - 5*x^2 - 7*x*y