The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{4} + 5 y^{2}\right) - 8$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 5$$
$$c = -8$$
Then
$$m = - \frac{5}{2}$$
$$n = - \frac{7}{4}$$
So,
$$- \left(y^{2} - \frac{5}{2}\right)^{2} - \frac{7}{4}$$
/ / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\ / / / ___\\ / / ___\\\
| | |\/ 7 || | |\/ 7 ||| | | |\/ 7 || | |\/ 7 ||| | | |\/ 7 || | |\/ 7 ||| | | |\/ 7 || | |\/ 7 |||
| |atan|-----|| |atan|-----||| | |atan|-----|| |atan|-----||| | |atan|-----|| |atan|-----||| | |atan|-----|| |atan|-----|||
| 3/4 | \ 5 /| 3/4 | \ 5 /|| | 3/4 | \ 5 /| 3/4 | \ 5 /|| | 3/4 | \ 5 /| 3/4 | \ 5 /|| | 3/4 | \ 5 /| 3/4 | \ 5 /||
|x + 2 *cos|-----------| + I*2 *sin|-----------||*|x + 2 *cos|-----------| - I*2 *sin|-----------||*|x + - 2 *cos|-----------| + I*2 *sin|-----------||*|x + - 2 *cos|-----------| - I*2 *sin|-----------||
\ \ 2 / \ 2 // \ \ 2 / \ 2 // \ \ 2 / \ 2 // \ \ 2 / \ 2 //
$$\left(x + \left(2^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)} - 2^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)}\right)\right) \left(x + \left(2^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)} + 2^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)}\right)\right) \left(x + \left(- 2^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)} + 2^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)}\right)\right) \left(x + \left(- 2^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)} - 2^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)}\right)\right)$$
(((x + 2^(3/4)*cos(atan(sqrt(7)/5)/2) + i*2^(3/4)*sin(atan(sqrt(7)/5)/2))*(x + 2^(3/4)*cos(atan(sqrt(7)/5)/2) - i*2^(3/4)*sin(atan(sqrt(7)/5)/2)))*(x - 2^(3/4)*cos(atan(sqrt(7)/5)/2) + i*2^(3/4)*sin(atan(sqrt(7)/5)/2)))*(x - 2^(3/4)*cos(atan(sqrt(7)/5)/2) - i*2^(3/4)*sin(atan(sqrt(7)/5)/2))
General simplification
[src]
$$- y^{4} + 5 y^{2} - 8$$
$$- y^{4} + 5 y^{2} - 8$$
$$- y^{4} + 5 y^{2} - 8$$
Combining rational expressions
[src]
$$y^{2} \left(5 - y^{2}\right) - 8$$
$$- y^{4} + 5 y^{2} - 8$$
$$- y^{4} + 5 y^{2} - 8$$
Assemble expression
[src]
$$- y^{4} + 5 y^{2} - 8$$
Rational denominator
[src]
$$- y^{4} + 5 y^{2} - 8$$