Mister Exam

Other calculators

Factor -y^4+5*y^2-8 squared

An expression to simplify:

The solution

You have entered [src]
   4      2    
- y  + 5*y  - 8
$$\left(- y^{4} + 5 y^{2}\right) - 8$$
-y^4 + 5*y^2 - 8
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- y^{4} + 5 y^{2}\right) - 8$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 5$$
$$c = -8$$
Then
$$m = - \frac{5}{2}$$
$$n = - \frac{7}{4}$$
So,
$$- \left(y^{2} - \frac{5}{2}\right)^{2} - \frac{7}{4}$$
Factorization [src]
/            /    /  ___\\             /    /  ___\\\ /            /    /  ___\\             /    /  ___\\\ /              /    /  ___\\             /    /  ___\\\ /              /    /  ___\\             /    /  ___\\\
|            |    |\/ 7 ||             |    |\/ 7 ||| |            |    |\/ 7 ||             |    |\/ 7 ||| |              |    |\/ 7 ||             |    |\/ 7 ||| |              |    |\/ 7 ||             |    |\/ 7 |||
|            |atan|-----||             |atan|-----||| |            |atan|-----||             |atan|-----||| |              |atan|-----||             |atan|-----||| |              |atan|-----||             |atan|-----|||
|     3/4    |    \  5  /|      3/4    |    \  5  /|| |     3/4    |    \  5  /|      3/4    |    \  5  /|| |       3/4    |    \  5  /|      3/4    |    \  5  /|| |       3/4    |    \  5  /|      3/4    |    \  5  /||
|x + 2   *cos|-----------| + I*2   *sin|-----------||*|x + 2   *cos|-----------| - I*2   *sin|-----------||*|x + - 2   *cos|-----------| + I*2   *sin|-----------||*|x + - 2   *cos|-----------| - I*2   *sin|-----------||
\            \     2     /             \     2     // \            \     2     /             \     2     // \              \     2     /             \     2     // \              \     2     /             \     2     //
$$\left(x + \left(2^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)} - 2^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)}\right)\right) \left(x + \left(2^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)} + 2^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)}\right)\right) \left(x + \left(- 2^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)} + 2^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)}\right)\right) \left(x + \left(- 2^{\frac{3}{4}} \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)} - 2^{\frac{3}{4}} i \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{7}}{5} \right)}}{2} \right)}\right)\right)$$
(((x + 2^(3/4)*cos(atan(sqrt(7)/5)/2) + i*2^(3/4)*sin(atan(sqrt(7)/5)/2))*(x + 2^(3/4)*cos(atan(sqrt(7)/5)/2) - i*2^(3/4)*sin(atan(sqrt(7)/5)/2)))*(x - 2^(3/4)*cos(atan(sqrt(7)/5)/2) + i*2^(3/4)*sin(atan(sqrt(7)/5)/2)))*(x - 2^(3/4)*cos(atan(sqrt(7)/5)/2) - i*2^(3/4)*sin(atan(sqrt(7)/5)/2))
General simplification [src]
      4      2
-8 - y  + 5*y 
$$- y^{4} + 5 y^{2} - 8$$
-8 - y^4 + 5*y^2
Numerical answer [src]
-8.0 - y^4 + 5.0*y^2
-8.0 - y^4 + 5.0*y^2
Common denominator [src]
      4      2
-8 - y  + 5*y 
$$- y^{4} + 5 y^{2} - 8$$
-8 - y^4 + 5*y^2
Powers [src]
      4      2
-8 - y  + 5*y 
$$- y^{4} + 5 y^{2} - 8$$
-8 - y^4 + 5*y^2
Combining rational expressions [src]
      2 /     2\
-8 + y *\5 - y /
$$y^{2} \left(5 - y^{2}\right) - 8$$
-8 + y^2*(5 - y^2)
Combinatorics [src]
      4      2
-8 - y  + 5*y 
$$- y^{4} + 5 y^{2} - 8$$
-8 - y^4 + 5*y^2
Trigonometric part [src]
      4      2
-8 - y  + 5*y 
$$- y^{4} + 5 y^{2} - 8$$
-8 - y^4 + 5*y^2
Assemble expression [src]
      4      2
-8 - y  + 5*y 
$$- y^{4} + 5 y^{2} - 8$$
-8 - y^4 + 5*y^2
Rational denominator [src]
      4      2
-8 - y  + 5*y 
$$- y^{4} + 5 y^{2} - 8$$
-8 - y^4 + 5*y^2