Mister Exam

Other calculators

Factor -x^2-x+1 squared

An expression to simplify:

The solution

You have entered [src]
   2        
- x  - x + 1
$$\left(- x^{2} - x\right) + 1$$
-x^2 - x + 1
General simplification [src]
         2
1 - x - x 
$$- x^{2} - x + 1$$
1 - x - x^2
Factorization [src]
/          ___\ /          ___\
|    1   \/ 5 | |    1   \/ 5 |
|x + - - -----|*|x + - + -----|
\    2     2  / \    2     2  /
$$\left(x + \left(\frac{1}{2} - \frac{\sqrt{5}}{2}\right)\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{5}}{2}\right)\right)$$
(x + 1/2 - sqrt(5)/2)*(x + 1/2 + sqrt(5)/2)
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- x^{2} - x\right) + 1$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = -1$$
$$c = 1$$
Then
$$m = \frac{1}{2}$$
$$n = \frac{5}{4}$$
So,
$$\frac{5}{4} - \left(x + \frac{1}{2}\right)^{2}$$
Numerical answer [src]
1.0 - x - x^2
1.0 - x - x^2
Rational denominator [src]
         2
1 - x - x 
$$- x^{2} - x + 1$$
1 - x - x^2
Combining rational expressions [src]
1 + x*(-1 - x)
$$x \left(- x - 1\right) + 1$$
1 + x*(-1 - x)
Assemble expression [src]
         2
1 - x - x 
$$- x^{2} - x + 1$$
1 - x - x^2
Common denominator [src]
         2
1 - x - x 
$$- x^{2} - x + 1$$
1 - x - x^2
Trigonometric part [src]
         2
1 - x - x 
$$- x^{2} - x + 1$$
1 - x - x^2
Combinatorics [src]
         2
1 - x - x 
$$- x^{2} - x + 1$$
1 - x - x^2
Powers [src]
         2
1 - x - x 
$$- x^{2} - x + 1$$
1 - x - x^2