Mister Exam

Other calculators

Factor -x^2-2*x*y-2*y^2 squared

An expression to simplify:

The solution

You have entered [src]
   2              2
- x  - 2*x*y - 2*y 
$$- 2 y^{2} + \left(- x^{2} - 2 x y\right)$$
-x^2 - 2*x*y - 2*y^2
The perfect square
Let's highlight the perfect square of the square three-member
$$- 2 y^{2} + \left(- x^{2} - 2 x y\right)$$
Let us write down the identical expression
$$- 2 y^{2} + \left(- x^{2} - 2 x y\right) = - y^{2} + \left(- x^{2} - 2 x y - y^{2}\right)$$
or
$$- 2 y^{2} + \left(- x^{2} - 2 x y\right) = - y^{2} - \left(x + y\right)^{2}$$
General simplification [src]
   2      2        
- x  - 2*y  - 2*x*y
$$- x^{2} - 2 x y - 2 y^{2}$$
-x^2 - 2*y^2 - 2*x*y
Factorization [src]
(x - y*(-1 + I))*(x + y*(1 + I))
$$\left(x - y \left(-1 + i\right)\right) \left(x + y \left(1 + i\right)\right)$$
(x - y*(-1 + i))*(x + y*(1 + i))
Numerical answer [src]
-x^2 - 2.0*y^2 - 2.0*x*y
-x^2 - 2.0*y^2 - 2.0*x*y
Trigonometric part [src]
   2      2        
- x  - 2*y  - 2*x*y
$$- x^{2} - 2 x y - 2 y^{2}$$
-x^2 - 2*y^2 - 2*x*y
Powers [src]
   2      2        
- x  - 2*y  - 2*x*y
$$- x^{2} - 2 x y - 2 y^{2}$$
-x^2 - 2*y^2 - 2*x*y
Rational denominator [src]
   2      2        
- x  - 2*y  - 2*x*y
$$- x^{2} - 2 x y - 2 y^{2}$$
-x^2 - 2*y^2 - 2*x*y
Combining rational expressions [src]
     2               
- 2*y  + x*(-x - 2*y)
$$x \left(- x - 2 y\right) - 2 y^{2}$$
-2*y^2 + x*(-x - 2*y)
Common denominator [src]
   2      2        
- x  - 2*y  - 2*x*y
$$- x^{2} - 2 x y - 2 y^{2}$$
-x^2 - 2*y^2 - 2*x*y
Assemble expression [src]
   2      2        
- x  - 2*y  - 2*x*y
$$- x^{2} - 2 x y - 2 y^{2}$$
-x^2 - 2*y^2 - 2*x*y
Combinatorics [src]
   2      2        
- x  - 2*y  - 2*x*y
$$- x^{2} - 2 x y - 2 y^{2}$$
-x^2 - 2*y^2 - 2*x*y