The perfect square
Let's highlight the perfect square of the square three-member
$$- 2 y^{2} + \left(- x^{2} - 2 x y\right)$$
Let us write down the identical expression
$$- 2 y^{2} + \left(- x^{2} - 2 x y\right) = - y^{2} + \left(- x^{2} - 2 x y - y^{2}\right)$$
or
$$- 2 y^{2} + \left(- x^{2} - 2 x y\right) = - y^{2} - \left(x + y\right)^{2}$$
General simplification
[src]
$$- x^{2} - 2 x y - 2 y^{2}$$
(x - y*(-1 + I))*(x + y*(1 + I))
$$\left(x - y \left(-1 + i\right)\right) \left(x + y \left(1 + i\right)\right)$$
(x - y*(-1 + i))*(x + y*(1 + i))
$$- x^{2} - 2 x y - 2 y^{2}$$
$$- x^{2} - 2 x y - 2 y^{2}$$
Rational denominator
[src]
$$- x^{2} - 2 x y - 2 y^{2}$$
Combining rational expressions
[src]
$$x \left(- x - 2 y\right) - 2 y^{2}$$
$$- x^{2} - 2 x y - 2 y^{2}$$
Assemble expression
[src]
$$- x^{2} - 2 x y - 2 y^{2}$$
$$- x^{2} - 2 x y - 2 y^{2}$$