General simplification
[src]
$$- 9 a^{2} - 6 a b + 7 b^{2}$$
/ / ___\\ / / ___\\
| b*\-1 + 2*\/ 2 /| | b*\1 + 2*\/ 2 /|
|a - ----------------|*|a + ---------------|
\ 3 / \ 3 /
$$\left(a - \frac{b \left(-1 + 2 \sqrt{2}\right)}{3}\right) \left(a + \frac{b \left(1 + 2 \sqrt{2}\right)}{3}\right)$$
(a - b*(-1 + 2*sqrt(2))/3)*(a + b*(1 + 2*sqrt(2))/3)
The perfect square
Let's highlight the perfect square of the square three-member
$$7 b^{2} + \left(- 9 a^{2} - 6 a b\right)$$
Let us write down the identical expression
$$7 b^{2} + \left(- 9 a^{2} - 6 a b\right) = 8 b^{2} + \left(- 9 a^{2} - 6 a b - b^{2}\right)$$
or
$$7 b^{2} + \left(- 9 a^{2} - 6 a b\right) = 8 b^{2} - \left(3 a + b\right)^{2}$$
Rational denominator
[src]
$$- 9 a^{2} - 6 a b + 7 b^{2}$$
Combining rational expressions
[src]
$$3 a \left(- 3 a - 2 b\right) + 7 b^{2}$$
7.0*b^2 - 9.0*a^2 - 6.0*a*b
7.0*b^2 - 9.0*a^2 - 6.0*a*b
Assemble expression
[src]
$$- 9 a^{2} - 6 a b + 7 b^{2}$$
$$- 9 a^{2} - 6 a b + 7 b^{2}$$
$$- 9 a^{2} - 6 a b + 7 b^{2}$$
$$- 9 a^{2} - 6 a b + 7 b^{2}$$
$$- 9 a^{2} - 6 a b + 7 b^{2}$$