Mister Exam

Factor -5*y^4-6*y^2-2 squared

An expression to simplify:

The solution

You have entered [src]
     4      2    
- 5*y  - 6*y  - 2
$$\left(- 5 y^{4} - 6 y^{2}\right) - 2$$
-5*y^4 - 6*y^2 - 2
General simplification [src]
        2      4
-2 - 6*y  - 5*y 
$$- 5 y^{4} - 6 y^{2} - 2$$
-2 - 6*y^2 - 5*y^4
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- 5 y^{4} - 6 y^{2}\right) - 2$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -5$$
$$b = -6$$
$$c = -2$$
Then
$$m = \frac{3}{5}$$
$$n = - \frac{1}{5}$$
So,
$$- 5 \left(y^{2} + \frac{3}{5}\right)^{2} - \frac{1}{5}$$
Factorization [src]
/    4 ___  3/4    /atan(1/3)\     4 ___  3/4    /atan(1/3)\\ /    4 ___  3/4    /atan(1/3)\     4 ___  3/4    /atan(1/3)\\ /      4 ___  3/4    /atan(1/3)\     4 ___  3/4    /atan(1/3)\\ /      4 ___  3/4    /atan(1/3)\     4 ___  3/4    /atan(1/3)\\
|    \/ 2 *5   *sin|---------|   I*\/ 2 *5   *cos|---------|| |    \/ 2 *5   *sin|---------|   I*\/ 2 *5   *cos|---------|| |      \/ 2 *5   *sin|---------|   I*\/ 2 *5   *cos|---------|| |      \/ 2 *5   *sin|---------|   I*\/ 2 *5   *cos|---------||
|                  \    2    /                   \    2    /| |                  \    2    /                   \    2    /| |                    \    2    /                   \    2    /| |                    \    2    /                   \    2    /|
|x + ------------------------- + ---------------------------|*|x + ------------------------- - ---------------------------|*|x + - ------------------------- + ---------------------------|*|x + - ------------------------- - ---------------------------|
\                5                            5             / \                5                            5             / \                  5                            5             / \                  5                            5             /
$$\left(x + \left(\frac{\sqrt[4]{2} \cdot 5^{\frac{3}{4}} \sin{\left(\frac{\operatorname{atan}{\left(\frac{1}{3} \right)}}{2} \right)}}{5} - \frac{\sqrt[4]{2} \cdot 5^{\frac{3}{4}} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{1}{3} \right)}}{2} \right)}}{5}\right)\right) \left(x + \left(\frac{\sqrt[4]{2} \cdot 5^{\frac{3}{4}} \sin{\left(\frac{\operatorname{atan}{\left(\frac{1}{3} \right)}}{2} \right)}}{5} + \frac{\sqrt[4]{2} \cdot 5^{\frac{3}{4}} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{1}{3} \right)}}{2} \right)}}{5}\right)\right) \left(x + \left(- \frac{\sqrt[4]{2} \cdot 5^{\frac{3}{4}} \sin{\left(\frac{\operatorname{atan}{\left(\frac{1}{3} \right)}}{2} \right)}}{5} + \frac{\sqrt[4]{2} \cdot 5^{\frac{3}{4}} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{1}{3} \right)}}{2} \right)}}{5}\right)\right) \left(x + \left(- \frac{\sqrt[4]{2} \cdot 5^{\frac{3}{4}} \sin{\left(\frac{\operatorname{atan}{\left(\frac{1}{3} \right)}}{2} \right)}}{5} - \frac{\sqrt[4]{2} \cdot 5^{\frac{3}{4}} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{1}{3} \right)}}{2} \right)}}{5}\right)\right)$$
(((x + 2^(1/4)*5^(3/4)*sin(atan(1/3)/2)/5 + i*2^(1/4)*5^(3/4)*cos(atan(1/3)/2)/5)*(x + 2^(1/4)*5^(3/4)*sin(atan(1/3)/2)/5 - i*2^(1/4)*5^(3/4)*cos(atan(1/3)/2)/5))*(x - 2^(1/4)*5^(3/4)*sin(atan(1/3)/2)/5 + i*2^(1/4)*5^(3/4)*cos(atan(1/3)/2)/5))*(x - 2^(1/4)*5^(3/4)*sin(atan(1/3)/2)/5 - i*2^(1/4)*5^(3/4)*cos(atan(1/3)/2)/5)
Numerical answer [src]
-2.0 - 6.0*y^2 - 5.0*y^4
-2.0 - 6.0*y^2 - 5.0*y^4
Powers [src]
        2      4
-2 - 6*y  - 5*y 
$$- 5 y^{4} - 6 y^{2} - 2$$
-2 - 6*y^2 - 5*y^4
Common denominator [src]
        2      4
-2 - 6*y  - 5*y 
$$- 5 y^{4} - 6 y^{2} - 2$$
-2 - 6*y^2 - 5*y^4
Assemble expression [src]
        2      4
-2 - 6*y  - 5*y 
$$- 5 y^{4} - 6 y^{2} - 2$$
-2 - 6*y^2 - 5*y^4
Combining rational expressions [src]
      2 /        2\
-2 + y *\-6 - 5*y /
$$y^{2} \left(- 5 y^{2} - 6\right) - 2$$
-2 + y^2*(-6 - 5*y^2)
Combinatorics [src]
        2      4
-2 - 6*y  - 5*y 
$$- 5 y^{4} - 6 y^{2} - 2$$
-2 - 6*y^2 - 5*y^4
Rational denominator [src]
        2      4
-2 - 6*y  - 5*y 
$$- 5 y^{4} - 6 y^{2} - 2$$
-2 - 6*y^2 - 5*y^4
Trigonometric part [src]
        2      4
-2 - 6*y  - 5*y 
$$- 5 y^{4} - 6 y^{2} - 2$$
-2 - 6*y^2 - 5*y^4