Mister Exam

Factor -b^2+b+3 squared

An expression to simplify:

The solution

You have entered [src]
   2        
- b  + b + 3
$$\left(- b^{2} + b\right) + 3$$
-b^2 + b + 3
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- b^{2} + b\right) + 3$$
To do this, let's use the formula
$$a b^{2} + b^{2} + c = a \left(b + m\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 1$$
$$c = 3$$
Then
$$m = - \frac{1}{2}$$
$$n = \frac{13}{4}$$
So,
$$\frac{13}{4} - \left(b - \frac{1}{2}\right)^{2}$$
General simplification [src]
         2
3 + b - b 
$$- b^{2} + b + 3$$
3 + b - b^2
Factorization [src]
/            ____\ /            ____\
|      1   \/ 13 | |      1   \/ 13 |
|b + - - + ------|*|b + - - - ------|
\      2     2   / \      2     2   /
$$\left(b + \left(- \frac{1}{2} + \frac{\sqrt{13}}{2}\right)\right) \left(b + \left(- \frac{\sqrt{13}}{2} - \frac{1}{2}\right)\right)$$
(b - 1/2 + sqrt(13)/2)*(b - 1/2 - sqrt(13)/2)
Numerical answer [src]
3.0 + b - b^2
3.0 + b - b^2
Rational denominator [src]
         2
3 + b - b 
$$- b^{2} + b + 3$$
3 + b - b^2
Powers [src]
         2
3 + b - b 
$$- b^{2} + b + 3$$
3 + b - b^2
Trigonometric part [src]
         2
3 + b - b 
$$- b^{2} + b + 3$$
3 + b - b^2
Assemble expression [src]
         2
3 + b - b 
$$- b^{2} + b + 3$$
3 + b - b^2
Combining rational expressions [src]
3 + b*(1 - b)
$$b \left(1 - b\right) + 3$$
3 + b*(1 - b)
Common denominator [src]
         2
3 + b - b 
$$- b^{2} + b + 3$$
3 + b - b^2
Combinatorics [src]
         2
3 + b - b 
$$- b^{2} + b + 3$$
3 + b - b^2