Mister Exam

Other calculators

Factor -a^2-3*a+7 squared

An expression to simplify:

The solution

You have entered [src]
   2          
- a  - 3*a + 7
$$\left(- a^{2} - 3 a\right) + 7$$
-a^2 - 3*a + 7
Factorization [src]
/          ____\ /          ____\
|    3   \/ 37 | |    3   \/ 37 |
|a + - - ------|*|a + - + ------|
\    2     2   / \    2     2   /
$$\left(a + \left(\frac{3}{2} - \frac{\sqrt{37}}{2}\right)\right) \left(a + \left(\frac{3}{2} + \frac{\sqrt{37}}{2}\right)\right)$$
(a + 3/2 - sqrt(37)/2)*(a + 3/2 + sqrt(37)/2)
General simplification [src]
     2      
7 - a  - 3*a
$$- a^{2} - 3 a + 7$$
7 - a^2 - 3*a
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(- a^{2} - 3 a\right) + 7$$
To do this, let's use the formula
$$a^{3} + a b + c = a \left(a + m\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = -3$$
$$c = 7$$
Then
$$m = \frac{3}{2}$$
$$n = \frac{37}{4}$$
So,
$$9$$
Common denominator [src]
     2      
7 - a  - 3*a
$$- a^{2} - 3 a + 7$$
7 - a^2 - 3*a
Trigonometric part [src]
     2      
7 - a  - 3*a
$$- a^{2} - 3 a + 7$$
7 - a^2 - 3*a
Combining rational expressions [src]
7 + a*(-3 - a)
$$a \left(- a - 3\right) + 7$$
7 + a*(-3 - a)
Powers [src]
     2      
7 - a  - 3*a
$$- a^{2} - 3 a + 7$$
7 - a^2 - 3*a
Numerical answer [src]
7.0 - a^2 - 3.0*a
7.0 - a^2 - 3.0*a
Assemble expression [src]
     2      
7 - a  - 3*a
$$- a^{2} - 3 a + 7$$
7 - a^2 - 3*a
Rational denominator [src]
     2      
7 - a  - 3*a
$$- a^{2} - 3 a + 7$$
7 - a^2 - 3*a
Combinatorics [src]
     2      
7 - a  - 3*a
$$- a^{2} - 3 a + 7$$
7 - a^2 - 3*a