Mister Exam

Factor -a^2-a+8 squared

An expression to simplify:

The solution

You have entered [src]
   2        
- a  - a + 8
(a2a)+8\left(- a^{2} - a\right) + 8
-a^2 - a + 8
Factorization [src]
/          ____\ /          ____\
|    1   \/ 33 | |    1   \/ 33 |
|a + - - ------|*|a + - + ------|
\    2     2   / \    2     2   /
(a+(12332))(a+(12+332))\left(a + \left(\frac{1}{2} - \frac{\sqrt{33}}{2}\right)\right) \left(a + \left(\frac{1}{2} + \frac{\sqrt{33}}{2}\right)\right)
(a + 1/2 - sqrt(33)/2)*(a + 1/2 + sqrt(33)/2)
General simplification [src]
         2
8 - a - a 
a2a+8- a^{2} - a + 8
8 - a - a^2
The perfect square
Let's highlight the perfect square of the square three-member
(a2a)+8\left(- a^{2} - a\right) + 8
To do this, let's use the formula
a3+ab+c=a(a+m)2+na^{3} + a b + c = a \left(a + m\right)^{2} + n
where
m=b2am = \frac{b}{2 a}
n=4acb24an = \frac{4 a c - b^{2}}{4 a}
In this case
a=1a = -1
b=1b = -1
c=8c = 8
Then
m=12m = \frac{1}{2}
n=334n = \frac{33}{4}
So,
88
Common denominator [src]
         2
8 - a - a 
a2a+8- a^{2} - a + 8
8 - a - a^2
Rational denominator [src]
         2
8 - a - a 
a2a+8- a^{2} - a + 8
8 - a - a^2
Trigonometric part [src]
         2
8 - a - a 
a2a+8- a^{2} - a + 8
8 - a - a^2
Assemble expression [src]
         2
8 - a - a 
a2a+8- a^{2} - a + 8
8 - a - a^2
Combining rational expressions [src]
8 + a*(-1 - a)
a(a1)+8a \left(- a - 1\right) + 8
8 + a*(-1 - a)
Powers [src]
         2
8 - a - a 
a2a+8- a^{2} - a + 8
8 - a - a^2
Combinatorics [src]
         2
8 - a - a 
a2a+8- a^{2} - a + 8
8 - a - a^2
Numerical answer [src]
8.0 - a - a^2
8.0 - a - a^2