Mister Exam

Other calculators

Factor 14*y^2+6*y*x+2*x^2 squared

An expression to simplify:

The solution

You have entered [src]
    2              2
14*y  + 6*y*x + 2*x 
$$2 x^{2} + \left(x 6 y + 14 y^{2}\right)$$
14*y^2 + (6*y)*x + 2*x^2
General simplification [src]
   2       2        
2*x  + 14*y  + 6*x*y
$$2 x^{2} + 6 x y + 14 y^{2}$$
2*x^2 + 14*y^2 + 6*x*y
Factorization [src]
/      /         ____\\ /      /        ____\\
|    y*\-3 + I*\/ 19 /| |    y*\3 + I*\/ 19 /|
|x - -----------------|*|x + ----------------|
\            2        / \           2        /
$$\left(x - \frac{y \left(-3 + \sqrt{19} i\right)}{2}\right) \left(x + \frac{y \left(3 + \sqrt{19} i\right)}{2}\right)$$
(x - y*(-3 + i*sqrt(19))/2)*(x + y*(3 + i*sqrt(19))/2)
The perfect square
Let's highlight the perfect square of the square three-member
$$2 x^{2} + \left(x 6 y + 14 y^{2}\right)$$
Let us write down the identical expression
$$2 x^{2} + \left(x 6 y + 14 y^{2}\right) = \frac{19 y^{2}}{2} + \left(2 x^{2} + 6 x y + \frac{9 y^{2}}{2}\right)$$
or
$$2 x^{2} + \left(x 6 y + 14 y^{2}\right) = \frac{19 y^{2}}{2} + \left(\sqrt{2} x + \frac{3 \sqrt{2} y}{2}\right)^{2}$$
Numerical answer [src]
2.0*x^2 + 14.0*y^2 + 6.0*x*y
2.0*x^2 + 14.0*y^2 + 6.0*x*y
Trigonometric part [src]
   2       2        
2*x  + 14*y  + 6*x*y
$$2 x^{2} + 6 x y + 14 y^{2}$$
2*x^2 + 14*y^2 + 6*x*y
Assemble expression [src]
   2       2        
2*x  + 14*y  + 6*x*y
$$2 x^{2} + 6 x y + 14 y^{2}$$
2*x^2 + 14*y^2 + 6*x*y
Combinatorics [src]
   2       2        
2*x  + 14*y  + 6*x*y
$$2 x^{2} + 6 x y + 14 y^{2}$$
2*x^2 + 14*y^2 + 6*x*y
Rational denominator [src]
   2       2        
2*x  + 14*y  + 6*x*y
$$2 x^{2} + 6 x y + 14 y^{2}$$
2*x^2 + 14*y^2 + 6*x*y
Powers [src]
   2       2        
2*x  + 14*y  + 6*x*y
$$2 x^{2} + 6 x y + 14 y^{2}$$
2*x^2 + 14*y^2 + 6*x*y
Common denominator [src]
   2       2        
2*x  + 14*y  + 6*x*y
$$2 x^{2} + 6 x y + 14 y^{2}$$
2*x^2 + 14*y^2 + 6*x*y
Combining rational expressions [src]
  / 2                \
2*\x  + y*(3*x + 7*y)/
$$2 \left(x^{2} + y \left(3 x + 7 y\right)\right)$$
2*(x^2 + y*(3*x + 7*y))