General simplification
[src]
$$2 x^{2} + 6 x y + 14 y^{2}$$
/ / ____\\ / / ____\\
| y*\-3 + I*\/ 19 /| | y*\3 + I*\/ 19 /|
|x - -----------------|*|x + ----------------|
\ 2 / \ 2 /
$$\left(x - \frac{y \left(-3 + \sqrt{19} i\right)}{2}\right) \left(x + \frac{y \left(3 + \sqrt{19} i\right)}{2}\right)$$
(x - y*(-3 + i*sqrt(19))/2)*(x + y*(3 + i*sqrt(19))/2)
The perfect square
Let's highlight the perfect square of the square three-member
$$2 x^{2} + \left(x 6 y + 14 y^{2}\right)$$
Let us write down the identical expression
$$2 x^{2} + \left(x 6 y + 14 y^{2}\right) = \frac{19 y^{2}}{2} + \left(2 x^{2} + 6 x y + \frac{9 y^{2}}{2}\right)$$
or
$$2 x^{2} + \left(x 6 y + 14 y^{2}\right) = \frac{19 y^{2}}{2} + \left(\sqrt{2} x + \frac{3 \sqrt{2} y}{2}\right)^{2}$$
2.0*x^2 + 14.0*y^2 + 6.0*x*y
2.0*x^2 + 14.0*y^2 + 6.0*x*y
$$2 x^{2} + 6 x y + 14 y^{2}$$
Assemble expression
[src]
$$2 x^{2} + 6 x y + 14 y^{2}$$
$$2 x^{2} + 6 x y + 14 y^{2}$$
Rational denominator
[src]
$$2 x^{2} + 6 x y + 14 y^{2}$$
$$2 x^{2} + 6 x y + 14 y^{2}$$
$$2 x^{2} + 6 x y + 14 y^{2}$$
Combining rational expressions
[src]
/ 2 \
2*\x + y*(3*x + 7*y)/
$$2 \left(x^{2} + y \left(3 x + 7 y\right)\right)$$