General simplification
[src]
$$8 y^{4} + 6 y^{2} + 7$$
/ / / ____\\ / / ____\\\ / / / ____\\ / / ____\\\ / / / ____\\ / / ____\\\ / / / ____\\ / / ____\\\
| | |\/ 47 || | |\/ 47 ||| | | |\/ 47 || | |\/ 47 ||| | | |\/ 47 || | |\/ 47 ||| | | |\/ 47 || | |\/ 47 |||
| |atan|------|| |atan|------||| | |atan|------|| |atan|------||| | |atan|------|| |atan|------||| | |atan|------|| |atan|------|||
| 4 ____ | \ 3 /| 4 ____ | \ 3 /|| | 4 ____ | \ 3 /| 4 ____ | \ 3 /|| | 4 ____ | \ 3 /| 4 ____ | \ 3 /|| | 4 ____ | \ 3 /| 4 ____ | \ 3 /||
| \/ 14 *sin|------------| I*\/ 14 *cos|------------|| | \/ 14 *sin|------------| I*\/ 14 *cos|------------|| | \/ 14 *sin|------------| I*\/ 14 *cos|------------|| | \/ 14 *sin|------------| I*\/ 14 *cos|------------||
| \ 2 / \ 2 /| | \ 2 / \ 2 /| | \ 2 / \ 2 /| | \ 2 / \ 2 /|
|x + ------------------------ + --------------------------|*|x + ------------------------ - --------------------------|*|x + - ------------------------ + --------------------------|*|x + - ------------------------ - --------------------------|
\ 2 2 / \ 2 2 / \ 2 2 / \ 2 2 /
$$\left(x + \left(\frac{\sqrt[4]{14} \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{47}}{3} \right)}}{2} \right)}}{2} - \frac{\sqrt[4]{14} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{47}}{3} \right)}}{2} \right)}}{2}\right)\right) \left(x + \left(\frac{\sqrt[4]{14} \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{47}}{3} \right)}}{2} \right)}}{2} + \frac{\sqrt[4]{14} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{47}}{3} \right)}}{2} \right)}}{2}\right)\right) \left(x + \left(- \frac{\sqrt[4]{14} \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{47}}{3} \right)}}{2} \right)}}{2} + \frac{\sqrt[4]{14} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{47}}{3} \right)}}{2} \right)}}{2}\right)\right) \left(x + \left(- \frac{\sqrt[4]{14} \sin{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{47}}{3} \right)}}{2} \right)}}{2} - \frac{\sqrt[4]{14} i \cos{\left(\frac{\operatorname{atan}{\left(\frac{\sqrt{47}}{3} \right)}}{2} \right)}}{2}\right)\right)$$
(((x + 14^(1/4)*sin(atan(sqrt(47)/3)/2)/2 + i*14^(1/4)*cos(atan(sqrt(47)/3)/2)/2)*(x + 14^(1/4)*sin(atan(sqrt(47)/3)/2)/2 - i*14^(1/4)*cos(atan(sqrt(47)/3)/2)/2))*(x - 14^(1/4)*sin(atan(sqrt(47)/3)/2)/2 + i*14^(1/4)*cos(atan(sqrt(47)/3)/2)/2))*(x - 14^(1/4)*sin(atan(sqrt(47)/3)/2)/2 - i*14^(1/4)*cos(atan(sqrt(47)/3)/2)/2)
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(8 y^{4} + 6 y^{2}\right) + 7$$
To do this, let's use the formula
$$a y^{4} + b y^{2} + c = a \left(m + y^{2}\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 8$$
$$b = 6$$
$$c = 7$$
Then
$$m = \frac{3}{8}$$
$$n = \frac{47}{8}$$
So,
$$8 \left(y^{2} + \frac{3}{8}\right)^{2} + \frac{47}{8}$$
$$8 y^{4} + 6 y^{2} + 7$$
Combining rational expressions
[src]
2 / 2\
7 + 2*y *\3 + 4*y /
$$2 y^{2} \left(4 y^{2} + 3\right) + 7$$
Rational denominator
[src]
$$8 y^{4} + 6 y^{2} + 7$$
Assemble expression
[src]
$$8 y^{4} + 6 y^{2} + 7$$
$$8 y^{4} + 6 y^{2} + 7$$
$$8 y^{4} + 6 y^{2} + 7$$
$$8 y^{4} + 6 y^{2} + 7$$