Mister Exam

Other calculators

How do you (x^3+x)/(x^4+1) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
 3    
x  + x
------
 4    
x  + 1
$$\frac{x^{3} + x}{x^{4} + 1}$$
(x^3 + x)/(x^4 + 1)
Fraction decomposition [src]
x*(1 + x^2)/(1 + x^4)
$$\frac{x \left(x^{2} + 1\right)}{x^{4} + 1}$$
  /     2\
x*\1 + x /
----------
       4  
  1 + x   
Numerical answer [src]
(x + x^3)/(1.0 + x^4)
(x + x^3)/(1.0 + x^4)
Combining rational expressions [src]
  /     2\
x*\1 + x /
----------
       4  
  1 + x   
$$\frac{x \left(x^{2} + 1\right)}{x^{4} + 1}$$
x*(1 + x^2)/(1 + x^4)
Combinatorics [src]
  /     2\
x*\1 + x /
----------
       4  
  1 + x   
$$\frac{x \left(x^{2} + 1\right)}{x^{4} + 1}$$
x*(1 + x^2)/(1 + x^4)