Mister Exam

Other calculators

How do you (x^3-27)/(x^3-3*x+9) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
   3        
  x  - 27   
------------
 3          
x  - 3*x + 9
$$\frac{x^{3} - 27}{\left(x^{3} - 3 x\right) + 9}$$
(x^3 - 27)/(x^3 - 3*x + 9)
General simplification [src]
         3  
  -27 + x   
------------
     3      
9 + x  - 3*x
$$\frac{x^{3} - 27}{x^{3} - 3 x + 9}$$
(-27 + x^3)/(9 + x^3 - 3*x)
Fraction decomposition [src]
1 + 3*(-12 + x)/(9 + x^3 - 3*x)
$$\frac{3 \left(x - 12\right)}{x^{3} - 3 x + 9} + 1$$
    3*(-12 + x) 
1 + ------------
         3      
    9 + x  - 3*x
Numerical answer [src]
(-27.0 + x^3)/(9.0 + x^3 - 3.0*x)
(-27.0 + x^3)/(9.0 + x^3 - 3.0*x)
Trigonometric part [src]
         3  
  -27 + x   
------------
     3      
9 + x  - 3*x
$$\frac{x^{3} - 27}{x^{3} - 3 x + 9}$$
(-27 + x^3)/(9 + x^3 - 3*x)
Combinatorics [src]
         /     2      \
(-3 + x)*\9 + x  + 3*x/
-----------------------
           3           
      9 + x  - 3*x     
$$\frac{\left(x - 3\right) \left(x^{2} + 3 x + 9\right)}{x^{3} - 3 x + 9}$$
(-3 + x)*(9 + x^2 + 3*x)/(9 + x^3 - 3*x)
Assemble expression [src]
         3  
  -27 + x   
------------
     3      
9 + x  - 3*x
$$\frac{x^{3} - 27}{x^{3} - 3 x + 9}$$
(-27 + x^3)/(9 + x^3 - 3*x)
Rational denominator [src]
         3  
  -27 + x   
------------
     3      
9 + x  - 3*x
$$\frac{x^{3} - 27}{x^{3} - 3 x + 9}$$
(-27 + x^3)/(9 + x^3 - 3*x)
Common denominator [src]
     -36 + 3*x  
1 + ------------
         3      
    9 + x  - 3*x
$$\frac{3 x - 36}{x^{3} - 3 x + 9} + 1$$
1 + (-36 + 3*x)/(9 + x^3 - 3*x)
Combining rational expressions [src]
           3   
    -27 + x    
---------------
      /      2\
9 + x*\-3 + x /
$$\frac{x^{3} - 27}{x \left(x^{2} - 3\right) + 9}$$
(-27 + x^3)/(9 + x*(-3 + x^2))
Powers [src]
         3  
  -27 + x   
------------
     3      
9 + x  - 3*x
$$\frac{x^{3} - 27}{x^{3} - 3 x + 9}$$
(-27 + x^3)/(9 + x^3 - 3*x)