Mister Exam

Other calculators

How do you ((2*x^2+4)/(x^4-77*x^2+4))^2+((-18*x)/(x^4-77*x^2+4))^2 in partial fractions?

An expression to simplify:

The solution

You have entered [src]
                2                    
/      2       \                    2
|   2*x  + 4   |    /    -18*x     \ 
|--------------|  + |--------------| 
| 4       2    |    | 4       2    | 
\x  - 77*x  + 4/    \x  - 77*x  + 4/ 
$$\left(\frac{\left(-1\right) 18 x}{\left(x^{4} - 77 x^{2}\right) + 4}\right)^{2} + \left(\frac{2 x^{2} + 4}{\left(x^{4} - 77 x^{2}\right) + 4}\right)^{2}$$
((2*x^2 + 4)/(x^4 - 77*x^2 + 4))^2 + ((-18*x)/(x^4 - 77*x^2 + 4))^2
Fraction decomposition [src]
2/(2 + x^2 - 9*x)^2 + 2/(2 + x^2 + 9*x)^2
$$\frac{2}{\left(x^{2} + 9 x + 2\right)^{2}} + \frac{2}{\left(x^{2} - 9 x + 2\right)^{2}}$$
       2                 2       
--------------- + ---------------
              2                 2
/     2      \    /     2      \ 
\2 + x  - 9*x/    \2 + x  + 9*x/ 
General simplification [src]
  /        2        \
  |/     2\        2|
4*\\2 + x /  + 81*x /
---------------------
                  2  
  /     4       2\   
  \4 + x  - 77*x /   
$$\frac{4 \left(81 x^{2} + \left(x^{2} + 2\right)^{2}\right)}{\left(x^{4} - 77 x^{2} + 4\right)^{2}}$$
4*((2 + x^2)^2 + 81*x^2)/(4 + x^4 - 77*x^2)^2
Numerical answer [src]
0.0026986001011975*(1 + 0.5*x^2)^2/(0.051948051948052 - x^2 + 0.012987012987013*x^4)^2 + 0.0546466520492494*x^2/(0.051948051948052 - x^2 + 0.012987012987013*x^4)^2
0.0026986001011975*(1 + 0.5*x^2)^2/(0.051948051948052 - x^2 + 0.012987012987013*x^4)^2 + 0.0546466520492494*x^2/(0.051948051948052 - x^2 + 0.012987012987013*x^4)^2
Assemble expression [src]
             2                       
   /       2\                  2     
   \4 + 2*x /             324*x      
----------------- + -----------------
                2                   2
/     4       2\    /     4       2\ 
\4 + x  - 77*x /    \4 + x  - 77*x / 
$$\frac{324 x^{2}}{\left(x^{4} - 77 x^{2} + 4\right)^{2}} + \frac{\left(2 x^{2} + 4\right)^{2}}{\left(x^{4} - 77 x^{2} + 4\right)^{2}}$$
(4 + 2*x^2)^2/(4 + x^4 - 77*x^2)^2 + 324*x^2/(4 + x^4 - 77*x^2)^2
Common denominator [src]
                 4        2        
         16 + 4*x  + 340*x         
-----------------------------------
      8        2        6         4
16 + x  - 616*x  - 154*x  + 5937*x 
$$\frac{4 x^{4} + 340 x^{2} + 16}{x^{8} - 154 x^{6} + 5937 x^{4} - 616 x^{2} + 16}$$
(16 + 4*x^4 + 340*x^2)/(16 + x^8 - 616*x^2 - 154*x^6 + 5937*x^4)
Rational denominator [src]
          2         
/       2\         2
\4 + 2*x /  + 324*x 
--------------------
                 2  
 /     4       2\   
 \4 + x  - 77*x /   
$$\frac{324 x^{2} + \left(2 x^{2} + 4\right)^{2}}{\left(x^{4} - 77 x^{2} + 4\right)^{2}}$$
((4 + 2*x^2)^2 + 324*x^2)/(4 + x^4 - 77*x^2)^2
Expand expression [src]
             2                       
   /   2    \                  2     
   \2*x  + 4/             324*x      
----------------- + -----------------
                2                   2
/ 4       2    \    / 4       2    \ 
\x  - 77*x  + 4/    \x  - 77*x  + 4/ 
$$\frac{324 x^{2}}{\left(\left(x^{4} - 77 x^{2}\right) + 4\right)^{2}} + \frac{\left(2 x^{2} + 4\right)^{2}}{\left(\left(x^{4} - 77 x^{2}\right) + 4\right)^{2}}$$
(2*x^2 + 4)^2/(x^4 - 77*x^2 + 4)^2 + (324*x^2)/(x^4 - 77*x^2 + 4)^2
Combinatorics [src]
         /     4       2\      
       4*\4 + x  + 85*x /      
-------------------------------
              2               2
/     2      \  /     2      \ 
\2 + x  - 9*x/ *\2 + x  + 9*x/ 
$$\frac{4 \left(x^{4} + 85 x^{2} + 4\right)}{\left(x^{2} - 9 x + 2\right)^{2} \left(x^{2} + 9 x + 2\right)^{2}}$$
4*(4 + x^4 + 85*x^2)/((2 + x^2 - 9*x)^2*(2 + x^2 + 9*x)^2)
Trigonometric part [src]
             2                       
   /       2\                  2     
   \4 + 2*x /             324*x      
----------------- + -----------------
                2                   2
/     4       2\    /     4       2\ 
\4 + x  - 77*x /    \4 + x  - 77*x / 
$$\frac{324 x^{2}}{\left(x^{4} - 77 x^{2} + 4\right)^{2}} + \frac{\left(2 x^{2} + 4\right)^{2}}{\left(x^{4} - 77 x^{2} + 4\right)^{2}}$$
(4 + 2*x^2)^2/(4 + x^4 - 77*x^2)^2 + 324*x^2/(4 + x^4 - 77*x^2)^2
Combining rational expressions [src]
  /        2        \
  |/     2\        2|
4*\\2 + x /  + 81*x /
---------------------
                    2
 /     2 /       2\\ 
 \4 + x *\-77 + x // 
$$\frac{4 \left(81 x^{2} + \left(x^{2} + 2\right)^{2}\right)}{\left(x^{2} \left(x^{2} - 77\right) + 4\right)^{2}}$$
4*((2 + x^2)^2 + 81*x^2)/(4 + x^2*(-77 + x^2))^2
Powers [src]
             2                       
   /       2\                  2     
   \4 + 2*x /             324*x      
----------------- + -----------------
                2                   2
/     4       2\    /     4       2\ 
\4 + x  - 77*x /    \4 + x  - 77*x / 
$$\frac{324 x^{2}}{\left(x^{4} - 77 x^{2} + 4\right)^{2}} + \frac{\left(2 x^{2} + 4\right)^{2}}{\left(x^{4} - 77 x^{2} + 4\right)^{2}}$$
(4 + 2*x^2)^2/(4 + x^4 - 77*x^2)^2 + 324*x^2/(4 + x^4 - 77*x^2)^2