Mister Exam
Lang:
EN
EN
ES
RU
Other calculators
Complex numbers step by step
Regular Equations Step by Step
Mathematical logic step by step
How to use it?
How do you in partial fractions?
:
(b^2-12*b)/(b^2-144)
(8c^2+10c-3)/(8c^3-36c^2+54c+27)
(3*x-1)/(x-2)
1/(x^2+2*x+2)
Factor polynomial
:
a^2*x+b*c+b^2*x+a*c+c^2*x+a*b
a^2*x^2+a*x+1-21*a^2
a^2+x^2-a^2*x^2+4*a*x-1
a^2*x^2-81
Least common denominator
:
x/6+y/6
((sin(4*x)/2+2*x)/8-sin(2*x)/2+x/2)/2
a^2+16/a-4+8*a/4+a
-a-12*b/27*a+a+15*b/27*a
Factor squared
:
-9*x^2-2*x*y+9*y^2
9*x^2-2*x*y+12*y^2
-9*x^2-2*x*y-3*y^2
9*x^2+2*x*y-12*y^2
Integral of d{x}
:
(3*x-1)/(x-2)
Identical expressions
(three *x- one)/(x- two)
(3 multiply by x minus 1) divide by (x minus 2)
(three multiply by x minus one) divide by (x minus two)
(3x-1)/(x-2)
3x-1/x-2
(3*x-1) divide by (x-2)
Similar expressions
(3*x+1)/(x-2)
(3*x-1)/(x+2)
Expression simplification
/
Fraction Decomposition into the simple
/
(3*x-1)/(x-2)
How do you (3*x-1)/(x-2) in partial fractions?
An expression to simplify:
Decompose fraction
The solution
You have entered
[src]
3*x - 1 ------- x - 2
$$\frac{3 x - 1}{x - 2}$$
(3*x - 1)/(x - 2)
Fraction decomposition
[src]
3 + 5/(-2 + x)
$$3 + \frac{5}{x - 2}$$
5 3 + ------ -2 + x
Numerical answer
[src]
(-1.0 + 3.0*x)/(-2.0 + x)
(-1.0 + 3.0*x)/(-2.0 + x)
Common denominator
[src]
5 3 + ------ -2 + x
$$3 + \frac{5}{x - 2}$$
3 + 5/(-2 + x)