Mister Exam

How do you 3-(3/(cos^25a)) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
       3    
3 - --------
       25   
    cos  (a)
$$3 - \frac{3}{\cos^{25}{\left(a \right)}}$$
3 - 3/cos(a)^25
Fraction decomposition [src]
3 - 3/cos(a)^25
$$3 - \frac{3}{\cos^{25}{\left(a \right)}}$$
       3    
3 - --------
       25   
    cos  (a)
Numerical answer [src]
3.0 - 3.0/cos(a)^25
3.0 - 3.0/cos(a)^25
Combinatorics [src]
                /       2         3         4            \ /       5         10         15         20   \
3*(-1 + cos(a))*\1 + cos (a) + cos (a) + cos (a) + cos(a)/*\1 + cos (a) + cos  (a) + cos  (a) + cos  (a)/
---------------------------------------------------------------------------------------------------------
                                                    25                                                   
                                                 cos  (a)                                                
$$\frac{3 \left(\cos{\left(a \right)} - 1\right) \left(\cos^{4}{\left(a \right)} + \cos^{3}{\left(a \right)} + \cos^{2}{\left(a \right)} + \cos{\left(a \right)} + 1\right) \left(\cos^{20}{\left(a \right)} + \cos^{15}{\left(a \right)} + \cos^{10}{\left(a \right)} + \cos^{5}{\left(a \right)} + 1\right)}{\cos^{25}{\left(a \right)}}$$
3*(-1 + cos(a))*(1 + cos(a)^2 + cos(a)^3 + cos(a)^4 + cos(a))*(1 + cos(a)^5 + cos(a)^10 + cos(a)^15 + cos(a)^20)/cos(a)^25
Powers [src]
           3        
3 - ----------------
                  25
    / I*a    -I*a\  
    |e      e    |  
    |---- + -----|  
    \ 2       2  /  
$$3 - \frac{3}{\left(\frac{e^{i a}}{2} + \frac{e^{- i a}}{2}\right)^{25}}$$
3 - 3/(exp(i*a)/2 + exp(-i*a)/2)^25
Combining rational expressions [src]
  /        25   \
3*\-1 + cos  (a)/
-----------------
        25       
     cos  (a)    
$$\frac{3 \left(\cos^{25}{\left(a \right)} - 1\right)}{\cos^{25}{\left(a \right)}}$$
3*(-1 + cos(a)^25)/cos(a)^25