Mister Exam

Other calculators

How do you sqrt(x)+x/((2*sqrt(x)))-3 in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  ___      x       
\/ x  + ------- - 3
            ___    
        2*\/ x     
$$\left(\sqrt{x} + \frac{x}{2 \sqrt{x}}\right) - 3$$
sqrt(x) + x/((2*sqrt(x))) - 3
Fraction decomposition [src]
-3 + 3*sqrt(x)/2
$$\frac{3 \sqrt{x}}{2} - 3$$
         ___
     3*\/ x 
-3 + -------
        2   
General simplification [src]
         ___
     3*\/ x 
-3 + -------
        2   
$$\frac{3 \sqrt{x}}{2} - 3$$
-3 + 3*sqrt(x)/2
Numerical answer [src]
-3.0 + 1.5*x^0.5
-3.0 + 1.5*x^0.5
Common denominator [src]
         ___
     3*\/ x 
-3 + -------
        2   
$$\frac{3 \sqrt{x}}{2} - 3$$
-3 + 3*sqrt(x)/2
Rational denominator [src]
          3/2
-6*x + 3*x   
-------------
     2*x     
$$\frac{3 x^{\frac{3}{2}} - 6 x}{2 x}$$
(-6*x + 3*x^(3/2))/(2*x)
Trigonometric part [src]
         ___
     3*\/ x 
-3 + -------
        2   
$$\frac{3 \sqrt{x}}{2} - 3$$
-3 + 3*sqrt(x)/2
Assemble expression [src]
         ___
     3*\/ x 
-3 + -------
        2   
$$\frac{3 \sqrt{x}}{2} - 3$$
-3 + 3*sqrt(x)/2
Combining rational expressions [src]
  /       ___\
3*\-2 + \/ x /
--------------
      2       
$$\frac{3 \left(\sqrt{x} - 2\right)}{2}$$
3*(-2 + sqrt(x))/2
Combinatorics [src]
         ___
     3*\/ x 
-3 + -------
        2   
$$\frac{3 \sqrt{x}}{2} - 3$$
-3 + 3*sqrt(x)/2
Powers [src]
         ___
     3*\/ x 
-3 + -------
        2   
$$\frac{3 \sqrt{x}}{2} - 3$$
-3 + 3*sqrt(x)/2
Expand expression [src]
         ___
     3*\/ x 
-3 + -------
        2   
$$\frac{3 \sqrt{x}}{2} - 3$$
-3 + 3*sqrt(x)/2