Fraction decomposition
[src]
sqrt(16/(6 + x - x^2) + x^3/(6 + x - x^2) - 7*x^2/(6 + x - x^2) + 8*x/(6 + x - x^2))
$$\sqrt{\frac{x^{3}}{- x^{2} + x + 6} - \frac{7 x^{2}}{- x^{2} + x + 6} + \frac{8 x}{- x^{2} + x + 6} + \frac{16}{- x^{2} + x + 6}}$$
___________________________________________________
/ 3 2
/ 16 x 7*x 8*x
/ ---------- + ---------- - ---------- + ----------
/ 2 2 2 2
\/ 6 + x - x 6 + x - x 6 + x - x 6 + x - x
General simplification
[src]
_____________________
/ 2
/ -(-4 + x) *(1 + x)
/ -------------------
\/ (-3 + x)*(2 + x)
$$\sqrt{- \frac{\left(x - 4\right)^{2} \left(x + 1\right)}{\left(x - 3\right) \left(x + 2\right)}}$$
sqrt(-(-4 + x)^2*(1 + x)/((-3 + x)*(2 + x)))
4.0*((-1 + 0.25*x)^2*(1.0 + x)/((2.0 + x)*(3.0 - x)))^0.5
4.0*((-1 + 0.25*x)^2*(1.0 + x)/((2.0 + x)*(3.0 - x)))^0.5
_______ __________ _______
/ 1 / 2 / 1 _______
/ ----- *\/ (x - 4) * / ----- *\/ x + 1
\/ 3 - x \/ x + 2
$$\sqrt{x + 1} \sqrt{\frac{1}{3 - x}} \sqrt{\left(x - 4\right)^{2}} \sqrt{\frac{1}{x + 2}}$$
sqrt(1/(3 - x))*sqrt((x - 4)^2)*sqrt(1/(x + 2))*sqrt(x + 1)
___________________
/ 2
/ (-4 + x) *(1 + x)
/ -----------------
/ 2
\/ 6 + x - x
$$\sqrt{\frac{\left(x - 4\right)^{2} \left(x + 1\right)}{- x^{2} + x + 6}}$$
sqrt((-4 + x)^2*(1 + x)/(6 + x - x^2))
___________________________________________________
/ 3 2
/ 16 x 7*x 8*x
/ ---------- + ---------- - ---------- + ----------
/ 2 2 2 2
\/ 6 + x - x 6 + x - x 6 + x - x 6 + x - x
$$\sqrt{\frac{x^{3}}{- x^{2} + x + 6} - \frac{7 x^{2}}{- x^{2} + x + 6} + \frac{8 x}{- x^{2} + x + 6} + \frac{16}{- x^{2} + x + 6}}$$
sqrt(16/(6 + x - x^2) + x^3/(6 + x - x^2) - 7*x^2/(6 + x - x^2) + 8*x/(6 + x - x^2))
Rational denominator
[src]
___________________
/ 2
/ (-4 + x) *(1 + x)
/ -----------------
/ 2
\/ 6 + x - x
$$\sqrt{\frac{\left(x - 4\right)^{2} \left(x + 1\right)}{- x^{2} + x + 6}}$$
sqrt((-4 + x)^2*(1 + x)/(6 + x - x^2))