Mister Exam

Other calculators

How do you (s^2-3s+9)/(9s^2-1)•(3s^2+s)/(s*3+27) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
 2                     
s  - 3*s + 9 /   2    \
------------*\3*s  + s/
     2                 
  9*s  - 1             
-----------------------
        s*3 + 27       
$$\frac{\frac{\left(s^{2} - 3 s\right) + 9}{9 s^{2} - 1} \left(3 s^{2} + s\right)}{3 s + 27}$$
(((s^2 - 3*s + 9)/(9*s^2 - 1))*(3*s^2 + s))/(s*3 + 27)
Fraction decomposition [src]
-35/27 + s/9 + 73/(756*(-1 + 3*s)) + 351/(28*(9 + s))
$$\frac{s}{9} - \frac{35}{27} + \frac{73}{756 \left(3 s - 1\right)} + \frac{351}{28 \left(s + 9\right)}$$
  35   s         73            351    
- -- + - + -------------- + ----------
  27   9   756*(-1 + 3*s)   28*(9 + s)
General simplification [src]
    /     2      \  
  s*\9 + s  - 3*s/  
--------------------
  /        2       \
3*\-9 + 3*s  + 26*s/
$$\frac{s \left(s^{2} - 3 s + 9\right)}{3 \left(3 s^{2} + 26 s - 9\right)}$$
s*(9 + s^2 - 3*s)/(3*(-9 + 3*s^2 + 26*s))
Trigonometric part [src]
/       2\ /     2      \
\s + 3*s /*\9 + s  - 3*s/
-------------------------
  /        2\            
  \-1 + 9*s /*(27 + 3*s) 
$$\frac{\left(3 s^{2} + s\right) \left(s^{2} - 3 s + 9\right)}{\left(3 s + 27\right) \left(9 s^{2} - 1\right)}$$
(s + 3*s^2)*(9 + s^2 - 3*s)/((-1 + 9*s^2)*(27 + 3*s))
Assemble expression [src]
/       2\ /     2      \
\s + 3*s /*\9 + s  - 3*s/
-------------------------
  /        2\            
  \-1 + 9*s /*(27 + 3*s) 
$$\frac{\left(3 s^{2} + s\right) \left(s^{2} - 3 s + 9\right)}{\left(3 s + 27\right) \left(9 s^{2} - 1\right)}$$
(s + 3*s^2)*(9 + s^2 - 3*s)/((-1 + 9*s^2)*(27 + 3*s))
Rational denominator [src]
/       2\ /     2      \
\s + 3*s /*\9 + s  - 3*s/
-------------------------
  /        2\            
  \-1 + 9*s /*(27 + 3*s) 
$$\frac{\left(3 s^{2} + s\right) \left(s^{2} - 3 s + 9\right)}{\left(3 s + 27\right) \left(9 s^{2} - 1\right)}$$
(s + 3*s^2)*(9 + s^2 - 3*s)/((-1 + 9*s^2)*(27 + 3*s))
Numerical answer [src]
(s + 3.0*s^2)*(9.0 + s^2 - 3.0*s)/((27.0 + 3.0*s)*(-1.0 + 9.0*s^2))
(s + 3.0*s^2)*(9.0 + s^2 - 3.0*s)/((27.0 + 3.0*s)*(-1.0 + 9.0*s^2))
Combinatorics [src]
    /     2      \  
  s*\9 + s  - 3*s/  
--------------------
3*(-1 + 3*s)*(9 + s)
$$\frac{s \left(s^{2} - 3 s + 9\right)}{3 \left(s + 9\right) \left(3 s - 1\right)}$$
s*(9 + s^2 - 3*s)/(3*(-1 + 3*s)*(9 + s))
Common denominator [src]
  35   s      -315 + 1018*s    
- -- + - + --------------------
  27   9              2        
           -243 + 81*s  + 702*s
$$\frac{s}{9} + \frac{1018 s - 315}{81 s^{2} + 702 s - 243} - \frac{35}{27}$$
-35/27 + s/9 + (-315 + 1018*s)/(-243 + 81*s^2 + 702*s)
Combining rational expressions [src]
s*(1 + 3*s)*(9 + s*(-3 + s))
----------------------------
     /        2\            
   3*\-1 + 9*s /*(9 + s)    
$$\frac{s \left(3 s + 1\right) \left(s \left(s - 3\right) + 9\right)}{3 \left(s + 9\right) \left(9 s^{2} - 1\right)}$$
s*(1 + 3*s)*(9 + s*(-3 + s))/(3*(-1 + 9*s^2)*(9 + s))
Powers [src]
/       2\ /     2      \
\s + 3*s /*\9 + s  - 3*s/
-------------------------
  /        2\            
  \-1 + 9*s /*(27 + 3*s) 
$$\frac{\left(3 s^{2} + s\right) \left(s^{2} - 3 s + 9\right)}{\left(3 s + 27\right) \left(9 s^{2} - 1\right)}$$
(s + 3*s^2)*(9 + s^2 - 3*s)/((-1 + 9*s^2)*(27 + 3*s))