Mister Exam

Other calculators

How do you (m^2+3*m)/(m^2+3*m+2)-(m^2-2*m)/(m^2-2*m-3) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
   2              2        
  m  + 3*m       m  - 2*m  
------------ - ------------
 2              2          
m  + 3*m + 2   m  - 2*m - 3
$$- \frac{m^{2} - 2 m}{\left(m^{2} - 2 m\right) - 3} + \frac{m^{2} + 3 m}{\left(m^{2} + 3 m\right) + 2}$$
(m^2 + 3*m)/(m^2 + 3*m + 2) - (m^2 - 2*m)/(m^2 - 2*m - 3)
Fraction decomposition [src]
2/(2 + m) - 5/(4*(1 + m)) - 3/(4*(-3 + m))
$$\frac{2}{m + 2} - \frac{5}{4 \left(m + 1\right)} - \frac{3}{4 \left(m - 3\right)}$$
  2         5           3     
----- - --------- - ----------
2 + m   4*(1 + m)   4*(-3 + m)
General simplification [src]
    5*m     
------------
     3      
6 - m  + 7*m
$$\frac{5 m}{- m^{3} + 7 m + 6}$$
5*m/(6 - m^3 + 7*m)
Numerical answer [src]
(m^2 + 3.0*m)/(2.0 + m^2 + 3.0*m) - (m^2 - 2.0*m)/(-3.0 + m^2 - 2.0*m)
(m^2 + 3.0*m)/(2.0 + m^2 + 3.0*m) - (m^2 - 2.0*m)/(-3.0 + m^2 - 2.0*m)
Assemble expression [src]
   2               2        
  m  + 3*m        m  - 2*m  
------------ - -------------
     2               2      
2 + m  + 3*m   -3 + m  - 2*m
$$- \frac{m^{2} - 2 m}{m^{2} - 2 m - 3} + \frac{m^{2} + 3 m}{m^{2} + 3 m + 2}$$
(m^2 + 3*m)/(2 + m^2 + 3*m) - (m^2 - 2*m)/(-3 + m^2 - 2*m)
Rational denominator [src]
/ 2      \ /      2      \   /   2      \ /     2      \
\m  + 3*m/*\-3 + m  - 2*m/ + \- m  + 2*m/*\2 + m  + 3*m/
--------------------------------------------------------
             /      2      \ /     2      \             
             \-3 + m  - 2*m/*\2 + m  + 3*m/             
$$\frac{\left(- m^{2} + 2 m\right) \left(m^{2} + 3 m + 2\right) + \left(m^{2} + 3 m\right) \left(m^{2} - 2 m - 3\right)}{\left(m^{2} - 2 m - 3\right) \left(m^{2} + 3 m + 2\right)}$$
((m^2 + 3*m)*(-3 + m^2 - 2*m) + (-m^2 + 2*m)*(2 + m^2 + 3*m))/((-3 + m^2 - 2*m)*(2 + m^2 + 3*m))
Combining rational expressions [src]
m*((-3 + m*(-2 + m))*(3 + m) - (-2 + m)*(2 + m*(3 + m)))
--------------------------------------------------------
           (-3 + m*(-2 + m))*(2 + m*(3 + m))            
$$\frac{m \left(- \left(m - 2\right) \left(m \left(m + 3\right) + 2\right) + \left(m + 3\right) \left(m \left(m - 2\right) - 3\right)\right)}{\left(m \left(m - 2\right) - 3\right) \left(m \left(m + 3\right) + 2\right)}$$
m*((-3 + m*(-2 + m))*(3 + m) - (-2 + m)*(2 + m*(3 + m)))/((-3 + m*(-2 + m))*(2 + m*(3 + m)))
Trigonometric part [src]
   2               2        
  m  + 3*m        m  - 2*m  
------------ - -------------
     2               2      
2 + m  + 3*m   -3 + m  - 2*m
$$- \frac{m^{2} - 2 m}{m^{2} - 2 m - 3} + \frac{m^{2} + 3 m}{m^{2} + 3 m + 2}$$
(m^2 + 3*m)/(2 + m^2 + 3*m) - (m^2 - 2*m)/(-3 + m^2 - 2*m)
Common denominator [src]
     -5*m    
-------------
      3      
-6 + m  - 7*m
$$- \frac{5 m}{m^{3} - 7 m - 6}$$
-5*m/(-6 + m^3 - 7*m)
Powers [src]
   2               2        
  m  + 3*m        m  - 2*m  
------------ - -------------
     2               2      
2 + m  + 3*m   -3 + m  - 2*m
$$- \frac{m^{2} - 2 m}{m^{2} - 2 m - 3} + \frac{m^{2} + 3 m}{m^{2} + 3 m + 2}$$
     2             2        
  - m  + 2*m      m  + 3*m  
------------- + ------------
      2              2      
-3 + m  - 2*m   2 + m  + 3*m
$$\frac{- m^{2} + 2 m}{m^{2} - 2 m - 3} + \frac{m^{2} + 3 m}{m^{2} + 3 m + 2}$$
(-m^2 + 2*m)/(-3 + m^2 - 2*m) + (m^2 + 3*m)/(2 + m^2 + 3*m)
Combinatorics [src]
          -5*m          
------------------------
(1 + m)*(-3 + m)*(2 + m)
$$- \frac{5 m}{\left(m - 3\right) \left(m + 1\right) \left(m + 2\right)}$$
-5*m/((1 + m)*(-3 + m)*(2 + m))