Mister Exam

Other calculators

How do you log((4*x-2*sqrt(10))/(2*sqrt(10)+4*x))/(2*sqrt(10)) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
   /          ____\
   |4*x - 2*\/ 10 |
log|--------------|
   |    ____      |
   \2*\/ 10  + 4*x/
-------------------
          ____     
      2*\/ 10      
$$\frac{\log{\left(\frac{4 x - 2 \sqrt{10}}{4 x + 2 \sqrt{10}} \right)}}{2 \sqrt{10}}$$
log((4*x - 2*sqrt(10))/(2*sqrt(10) + 4*x))/((2*sqrt(10)))
Fraction decomposition [src]
sqrt(10)*log(-2*sqrt(10)/(2*sqrt(10) + 4*x) + 4*x/(2*sqrt(10) + 4*x))/20
$$\frac{\sqrt{10} \log{\left(\frac{4 x}{4 x + 2 \sqrt{10}} - \frac{2 \sqrt{10}}{4 x + 2 \sqrt{10}} \right)}}{20}$$
          /         ____                    \
  ____    |     2*\/ 10            4*x      |
\/ 10 *log|- -------------- + --------------|
          |      ____             ____      |
          \  2*\/ 10  + 4*x   2*\/ 10  + 4*x/
---------------------------------------------
                      20                     
General simplification [src]
          /    ____      \
  ____    |- \/ 10  + 2*x|
\/ 10 *log|--------------|
          |   ____       |
          \ \/ 10  + 2*x /
--------------------------
            20            
$$\frac{\sqrt{10} \log{\left(\frac{2 x - \sqrt{10}}{2 x + \sqrt{10}} \right)}}{20}$$
sqrt(10)*log((-sqrt(10) + 2*x)/(sqrt(10) + 2*x))/20
Rational denominator [src]
          /       2         ____\
  ____    |5 + 2*x  - 2*x*\/ 10 |
\/ 10 *log|---------------------|
          |              2      |
          \      -5 + 2*x       /
---------------------------------
                20               
$$\frac{\sqrt{10} \log{\left(\frac{2 x^{2} - 2 \sqrt{10} x + 5}{2 x^{2} - 5} \right)}}{20}$$
sqrt(10)*log((5 + 2*x^2 - 2*x*sqrt(10))/(-5 + 2*x^2))/20
Numerical answer [src]
0.158113883008419*log((4*x - 2*sqrt(10))/(2*sqrt(10) + 4*x))
0.158113883008419*log((4*x - 2*sqrt(10))/(2*sqrt(10) + 4*x))
Combinatorics [src]
          /         ____                    \
  ____    |     2*\/ 10            4*x      |
\/ 10 *log|- -------------- + --------------|
          |      ____             ____      |
          \  2*\/ 10  + 4*x   2*\/ 10  + 4*x/
---------------------------------------------
                      20                     
$$\frac{\sqrt{10} \log{\left(\frac{4 x}{4 x + 2 \sqrt{10}} - \frac{2 \sqrt{10}}{4 x + 2 \sqrt{10}} \right)}}{20}$$
sqrt(10)*log(-2*sqrt(10)/(2*sqrt(10) + 4*x) + 4*x/(2*sqrt(10) + 4*x))/20
Common denominator [src]
          /       ____                  \
  ____    |     \/ 10           2*x     |
\/ 10 *log|- ------------ + ------------|
          |    ____           ____      |
          \  \/ 10  + 2*x   \/ 10  + 2*x/
-----------------------------------------
                    20                   
$$\frac{\sqrt{10} \log{\left(\frac{2 x}{2 x + \sqrt{10}} - \frac{\sqrt{10}}{2 x + \sqrt{10}} \right)}}{20}$$
sqrt(10)*log(-sqrt(10)/(sqrt(10) + 2*x) + 2*x/(sqrt(10) + 2*x))/20
Trigonometric part [src]
          /      ____      \
  ____    |- 2*\/ 10  + 4*x|
\/ 10 *log|----------------|
          |     ____       |
          \ 2*\/ 10  + 4*x /
----------------------------
             20             
$$\frac{\sqrt{10} \log{\left(\frac{4 x - 2 \sqrt{10}}{4 x + 2 \sqrt{10}} \right)}}{20}$$
sqrt(10)*log((-2*sqrt(10) + 4*x)/(2*sqrt(10) + 4*x))/20
Combining rational expressions [src]
          /    ____      \
  ____    |- \/ 10  + 2*x|
\/ 10 *log|--------------|
          |   ____       |
          \ \/ 10  + 2*x /
--------------------------
            20            
$$\frac{\sqrt{10} \log{\left(\frac{2 x - \sqrt{10}}{2 x + \sqrt{10}} \right)}}{20}$$
sqrt(10)*log((-sqrt(10) + 2*x)/(sqrt(10) + 2*x))/20
Powers [src]
          /      ____      \
  ____    |- 2*\/ 10  + 4*x|
\/ 10 *log|----------------|
          |     ____       |
          \ 2*\/ 10  + 4*x /
----------------------------
             20             
$$\frac{\sqrt{10} \log{\left(\frac{4 x - 2 \sqrt{10}}{4 x + 2 \sqrt{10}} \right)}}{20}$$
sqrt(10)*log((-2*sqrt(10) + 4*x)/(2*sqrt(10) + 4*x))/20
Assemble expression [src]
          /          ____\
  ____    |4*x - 2*\/ 10 |
\/ 10 *log|--------------|
          |    ____      |
          \2*\/ 10  + 4*x/
--------------------------
            20            
$$\frac{\sqrt{10} \log{\left(\frac{4 x - 2 \sqrt{10}}{4 x + 2 \sqrt{10}} \right)}}{20}$$
sqrt(10)*log((4*x - 2*sqrt(10))/(2*sqrt(10) + 4*x))/20
Expand expression [src]
          /          ____\
  ____    |4*x - 2*\/ 10 |
\/ 10 *log|--------------|
          |    ____      |
          \2*\/ 10  + 4*x/
--------------------------
            20            
$$\frac{\sqrt{10} \log{\left(\frac{4 x - 2 \sqrt{10}}{4 x + 2 \sqrt{10}} \right)}}{20}$$
sqrt(10)*log((4*x - 2*sqrt(10))/(2*sqrt(10) + 4*x))/20