Mister Exam

Factor polynomial x^4-x

An expression to simplify:

The solution

You have entered [src]
 4    
x  - x
$$x^{4} - x$$
x^4 - x
Factorization [src]
          /            ___\ /            ___\
          |    1   I*\/ 3 | |    1   I*\/ 3 |
x*(x - 1)*|x + - + -------|*|x + - - -------|
          \    2      2   / \    2      2   /
$$x \left(x - 1\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)\right) \left(x + \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)\right)$$
((x*(x - 1))*(x + 1/2 + i*sqrt(3)/2))*(x + 1/2 - i*sqrt(3)/2)
Combinatorics [src]
           /         2\
x*(-1 + x)*\1 + x + x /
$$x \left(x - 1\right) \left(x^{2} + x + 1\right)$$
x*(-1 + x)*(1 + x + x^2)
Numerical answer [src]
x^4 - x
x^4 - x
Combining rational expressions [src]
  /      3\
x*\-1 + x /
$$x \left(x^{3} - 1\right)$$
x*(-1 + x^3)