Mister Exam

Factor polynomial x+x^4

An expression to simplify:

The solution

You have entered [src]
     4
x + x 
$$x^{4} + x$$
x + x^4
Factorization [src]
          /              ___\ /              ___\
          |      1   I*\/ 3 | |      1   I*\/ 3 |
(x + 1)*x*|x + - - + -------|*|x + - - - -------|
          \      2      2   / \      2      2   /
$$x \left(x + 1\right) \left(x + \left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right)\right) \left(x + \left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right)\right)$$
(((x + 1)*x)*(x - 1/2 + i*sqrt(3)/2))*(x - 1/2 - i*sqrt(3)/2)
Numerical answer [src]
x + x^4
x + x^4
Combinatorics [src]
          /     2    \
x*(1 + x)*\1 + x  - x/
$$x \left(x + 1\right) \left(x^{2} - x + 1\right)$$
x*(1 + x)*(1 + x^2 - x)
Combining rational expressions [src]
  /     3\
x*\1 + x /
$$x \left(x^{3} + 1\right)$$
x*(1 + x^3)