Mister Exam

Factor polynomial x+12+x^2

An expression to simplify:

The solution

You have entered [src]
          2
x + 12 + x 
$$x^{2} + \left(x + 12\right)$$
x + 12 + x^2
The perfect square
Let's highlight the perfect square of the square three-member
$$x^{2} + \left(x + 12\right)$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = 1$$
$$c = 12$$
Then
$$m = \frac{1}{2}$$
$$n = \frac{47}{4}$$
So,
$$\left(x + \frac{1}{2}\right)^{2} + \frac{47}{4}$$
General simplification [src]
          2
12 + x + x 
$$x^{2} + x + 12$$
12 + x + x^2
Factorization [src]
/            ____\ /            ____\
|    1   I*\/ 47 | |    1   I*\/ 47 |
|x + - + --------|*|x + - - --------|
\    2      2    / \    2      2    /
$$\left(x + \left(\frac{1}{2} - \frac{\sqrt{47} i}{2}\right)\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{47} i}{2}\right)\right)$$
(x + 1/2 + i*sqrt(47)/2)*(x + 1/2 - i*sqrt(47)/2)
Assemble expression [src]
          2
12 + x + x 
$$x^{2} + x + 12$$
12 + x + x^2
Numerical answer [src]
12.0 + x + x^2
12.0 + x + x^2
Combinatorics [src]
          2
12 + x + x 
$$x^{2} + x + 12$$
12 + x + x^2
Powers [src]
          2
12 + x + x 
$$x^{2} + x + 12$$
12 + x + x^2
Common denominator [src]
          2
12 + x + x 
$$x^{2} + x + 12$$
12 + x + x^2
Combining rational expressions [src]
          2
12 + x + x 
$$x^{2} + x + 12$$
12 + x + x^2
Rational denominator [src]
          2
12 + x + x 
$$x^{2} + x + 12$$
12 + x + x^2
Trigonometric part [src]
          2
12 + x + x 
$$x^{2} + x + 12$$
12 + x + x^2