Mister Exam

Other calculators

Factor polynomial x+8*x^2+20*x+96

An expression to simplify:

The solution

You have entered [src]
       2            
x + 8*x  + 20*x + 96
$$\left(20 x + \left(8 x^{2} + x\right)\right) + 96$$
x + 8*x^2 + 20*x + 96
Factorization [src]
/             ______\ /             ______\
|    21   I*\/ 2631 | |    21   I*\/ 2631 |
|x + -- + ----------|*|x + -- - ----------|
\    16       16    / \    16       16    /
$$\left(x + \left(\frac{21}{16} - \frac{\sqrt{2631} i}{16}\right)\right) \left(x + \left(\frac{21}{16} + \frac{\sqrt{2631} i}{16}\right)\right)$$
(x + 21/16 + i*sqrt(2631)/16)*(x + 21/16 - i*sqrt(2631)/16)
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(20 x + \left(8 x^{2} + x\right)\right) + 96$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 8$$
$$b = 21$$
$$c = 96$$
Then
$$m = \frac{21}{16}$$
$$n = \frac{2631}{32}$$
So,
$$8 \left(x + \frac{21}{16}\right)^{2} + \frac{2631}{32}$$
General simplification [src]
        2       
96 + 8*x  + 21*x
$$8 x^{2} + 21 x + 96$$
96 + 8*x^2 + 21*x
Powers [src]
        2       
96 + 8*x  + 21*x
$$8 x^{2} + 21 x + 96$$
96 + 8*x^2 + 21*x
Combining rational expressions [src]
96 + x*(21 + 8*x)
$$x \left(8 x + 21\right) + 96$$
96 + x*(21 + 8*x)
Trigonometric part [src]
        2       
96 + 8*x  + 21*x
$$8 x^{2} + 21 x + 96$$
96 + 8*x^2 + 21*x
Common denominator [src]
        2       
96 + 8*x  + 21*x
$$8 x^{2} + 21 x + 96$$
96 + 8*x^2 + 21*x
Numerical answer [src]
96.0 + 8.0*x^2 + 21.0*x
96.0 + 8.0*x^2 + 21.0*x
Combinatorics [src]
        2       
96 + 8*x  + 21*x
$$8 x^{2} + 21 x + 96$$
96 + 8*x^2 + 21*x
Rational denominator [src]
        2       
96 + 8*x  + 21*x
$$8 x^{2} + 21 x + 96$$
96 + 8*x^2 + 21*x
Assemble expression [src]
        2       
96 + 8*x  + 21*x
$$8 x^{2} + 21 x + 96$$
96 + 8*x^2 + 21*x