Mister Exam

Factor polynomial t-7-t^2

An expression to simplify:

The solution

You have entered [src]
         2
t - 7 - t 
$$- t^{2} + \left(t - 7\right)$$
t - 7 - t^2
The perfect square
Let's highlight the perfect square of the square three-member
$$- t^{2} + \left(t - 7\right)$$
To do this, let's use the formula
$$a t^{2} + b t + c = a \left(m + t\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = -1$$
$$b = 1$$
$$c = -7$$
Then
$$m = - \frac{1}{2}$$
$$n = - \frac{27}{4}$$
So,
$$- \left(t - \frac{1}{2}\right)^{2} - \frac{27}{4}$$
General simplification [src]
          2
-7 + t - t 
$$- t^{2} + t - 7$$
-7 + t - t^2
Factorization [src]
/                ___\ /                ___\
|      1   3*I*\/ 3 | |      1   3*I*\/ 3 |
|t + - - + ---------|*|t + - - - ---------|
\      2       2    / \      2       2    /
$$\left(t + \left(- \frac{1}{2} - \frac{3 \sqrt{3} i}{2}\right)\right) \left(t + \left(- \frac{1}{2} + \frac{3 \sqrt{3} i}{2}\right)\right)$$
(t - 1/2 + 3*i*sqrt(3)/2)*(t - 1/2 - 3*i*sqrt(3)/2)
Combining rational expressions [src]
          2
-7 + t - t 
$$- t^{2} + t - 7$$
-7 + t - t^2
Assemble expression [src]
          2
-7 + t - t 
$$- t^{2} + t - 7$$
-7 + t - t^2
Rational denominator [src]
          2
-7 + t - t 
$$- t^{2} + t - 7$$
-7 + t - t^2
Powers [src]
          2
-7 + t - t 
$$- t^{2} + t - 7$$
-7 + t - t^2
Trigonometric part [src]
          2
-7 + t - t 
$$- t^{2} + t - 7$$
-7 + t - t^2
Combinatorics [src]
          2
-7 + t - t 
$$- t^{2} + t - 7$$
-7 + t - t^2
Numerical answer [src]
-7.0 + t - t^2
-7.0 + t - t^2
Common denominator [src]
          2
-7 + t - t 
$$- t^{2} + t - 7$$
-7 + t - t^2