Mister Exam

Factor polynomial 16-x^4

An expression to simplify:

The solution

You have entered [src]
      4
16 - x 
$$16 - x^{4}$$
16 - x^4
Factorization [src]
(x + 2)*(x - 2)*(x + 2*I)*(x - 2*I)
$$\left(x - 2\right) \left(x + 2\right) \left(x + 2 i\right) \left(x - 2 i\right)$$
(((x + 2)*(x - 2))*(x + 2*i))*(x - 2*i)
Numerical answer [src]
16.0 - x^4
16.0 - x^4
Combinatorics [src]
                  /     2\
-(-2 + x)*(2 + x)*\4 + x /
$$- \left(x - 2\right) \left(x + 2\right) \left(x^{2} + 4\right)$$
-(-2 + x)*(2 + x)*(4 + x^2)