General simplification
[src]
$$k^{6} + 20 k^{3} - 16$$
/ ________________ ________________\ / ________________ ________________\ / _______________ _______________\ / _______________ _______________\
/ ________________\ / _______________\ | 3 / ____ ___ 3 / ____ | | 3 / ____ ___ 3 / ____ | | 3 / ____ ___ 3 / ____ | | 3 / ____ ___ 3 / ____ |
| 3 / ____ | | 3 / ____ | | \/ -10 + 2*\/ 29 I*\/ 3 *\/ -10 + 2*\/ 29 | | \/ -10 + 2*\/ 29 I*\/ 3 *\/ -10 + 2*\/ 29 | | \/ 10 + 2*\/ 29 I*\/ 3 *\/ 10 + 2*\/ 29 | | \/ 10 + 2*\/ 29 I*\/ 3 *\/ 10 + 2*\/ 29 |
\k - \/ -10 + 2*\/ 29 /*\k + \/ 10 + 2*\/ 29 /*|k + ------------------- + ---------------------------|*|k + ------------------- - ---------------------------|*|k + - ------------------ + --------------------------|*|k + - ------------------ - --------------------------|
\ 2 2 / \ 2 2 / \ 2 2 / \ 2 2 /
$$\left(k - \sqrt[3]{-10 + 2 \sqrt{29}}\right) \left(k + \sqrt[3]{10 + 2 \sqrt{29}}\right) \left(k + \left(\frac{\sqrt[3]{-10 + 2 \sqrt{29}}}{2} + \frac{\sqrt{3} i \sqrt[3]{-10 + 2 \sqrt{29}}}{2}\right)\right) \left(k + \left(\frac{\sqrt[3]{-10 + 2 \sqrt{29}}}{2} - \frac{\sqrt{3} i \sqrt[3]{-10 + 2 \sqrt{29}}}{2}\right)\right) \left(k + \left(- \frac{\sqrt[3]{10 + 2 \sqrt{29}}}{2} + \frac{\sqrt{3} i \sqrt[3]{10 + 2 \sqrt{29}}}{2}\right)\right) \left(k + \left(- \frac{\sqrt[3]{10 + 2 \sqrt{29}}}{2} - \frac{\sqrt{3} i \sqrt[3]{10 + 2 \sqrt{29}}}{2}\right)\right)$$
(((((k - (-10 + 2*sqrt(29))^(1/3))*(k + (10 + 2*sqrt(29))^(1/3)))*(k + (-10 + 2*sqrt(29))^(1/3)/2 + i*sqrt(3)*(-10 + 2*sqrt(29))^(1/3)/2))*(k + (-10 + 2*sqrt(29))^(1/3)/2 - i*sqrt(3)*(-10 + 2*sqrt(29))^(1/3)/2))*(k - (10 + 2*sqrt(29))^(1/3)/2 + i*sqrt(3)*(10 + 2*sqrt(29))^(1/3)/2))*(k - (10 + 2*sqrt(29))^(1/3)/2 - i*sqrt(3)*(10 + 2*sqrt(29))^(1/3)/2)
$$k^{6} + 20 k^{3} - 16$$
$$k^{6} + 20 k^{3} - 16$$
Assemble expression
[src]
$$k^{6} + 20 k^{3} - 16$$
Combining rational expressions
[src]
3 / 3\
-16 + k *\20 + k /
$$k^{3} \left(k^{3} + 20\right) - 16$$
$$k^{6} + 20 k^{3} - 16$$
Rational denominator
[src]
$$k^{6} + 20 k^{3} - 16$$
$$k^{6} + 20 k^{3} - 16$$