/ 1 \ / 1 \
log|1 + --------| log|-1 + --------|
1 \ sec(2*x)/ \ sec(2*x)/
---------- - ----------------- + ------------------
2*sec(2*x) 4 4
$$\frac{\log{\left(-1 + \frac{1}{\sec{\left(2 x \right)}} \right)}}{4} - \frac{\log{\left(1 + \frac{1}{\sec{\left(2 x \right)}} \right)}}{4} + \frac{1}{2 \sec{\left(2 x \right)}}$$
/ 2\ / 2\
|/ 2/x\\ | | / 2/x\\ |
||1 - tan |-|| | | |1 - tan |-|| |
|\ \2// | | \ \2// |
log|--------------| log|-1 + --------------|
| 2| | 2| 2
|/ 2/x\\ | | / 2/x\\ | / 2/x\\
||1 + tan |-|| | | |1 + tan |-|| | |1 - tan |-||
1 \\ \2// / \ \ \2// / \ \2//
- - - ------------------- + ------------------------ + --------------
2 4 4 2
/ 2/x\\
|1 + tan |-||
\ \2//
$$\frac{\left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} - \frac{\log{\left(\frac{\left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} \right)}}{4} + \frac{\log{\left(\frac{\left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} - 1 \right)}}{4} - \frac{1}{2}$$
/ 2 \ / 2 \
| -1 + cot (x)| | -1 + cot (x)|
log|1 + ------------| log|-1 + ------------|
| 2 | | 2 | 2
\ 1 + cot (x) / \ 1 + cot (x) / -1 + cot (x)
- --------------------- + ---------------------- + ---------------
4 4 / 2 \
2*\1 + cot (x)/
$$\frac{\cot^{2}{\left(x \right)} - 1}{2 \left(\cot^{2}{\left(x \right)} + 1\right)} + \frac{\log{\left(\frac{\cot^{2}{\left(x \right)} - 1}{\cot^{2}{\left(x \right)} + 1} - 1 \right)}}{4} - \frac{\log{\left(\frac{\cot^{2}{\left(x \right)} - 1}{\cot^{2}{\left(x \right)} + 1} + 1 \right)}}{4}$$
/ 2 \ / 2 \
1 2 log\cos (x)/ log\-1 + cos (x)/
- - + cos (x) - ------------ + -----------------
2 4 4
$$\frac{\log{\left(\cos^{2}{\left(x \right)} - 1 \right)}}{4} - \frac{\log{\left(\cos^{2}{\left(x \right)} \right)}}{4} + \cos^{2}{\left(x \right)} - \frac{1}{2}$$
/ 2 \ / 2 \
1 2 log\cos (x)/ log\-sin (x)/
- - + cos (x) - ------------ + -------------
2 4 4
$$\frac{\log{\left(- \sin^{2}{\left(x \right)} \right)}}{4} - \frac{\log{\left(\cos^{2}{\left(x \right)} \right)}}{4} + \cos^{2}{\left(x \right)} - \frac{1}{2}$$
/-1 + cos(2*x)\
log|-------------|
cos(2*x) log(1 + cos(2*x)) log(2) \ 2 /
-------- - ----------------- + ------ + ------------------
2 4 4 4
$$\frac{\log{\left(\frac{\cos{\left(2 x \right)} - 1}{2} \right)}}{4} - \frac{\log{\left(\cos{\left(2 x \right)} + 1 \right)}}{4} + \frac{\cos{\left(2 x \right)}}{2} + \frac{\log{\left(2 \right)}}{4}$$
/ 2 \ / 2 \
| 1 - tan (x)| | 1 - tan (x)|
log|1 + -----------| log|-1 + -----------|
| 2 | | 2 | 2
\ 1 + tan (x)/ \ 1 + tan (x)/ 1 - tan (x)
- -------------------- + --------------------- + ---------------
4 4 / 2 \
2*\1 + tan (x)/
$$\frac{1 - \tan^{2}{\left(x \right)}}{2 \left(\tan^{2}{\left(x \right)} + 1\right)} + \frac{\log{\left(\frac{1 - \tan^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)} + 1} - 1 \right)}}{4} - \frac{\log{\left(\frac{1 - \tan^{2}{\left(x \right)}}{\tan^{2}{\left(x \right)} + 1} + 1 \right)}}{4}$$
/ 1 \ / 1 \
log|-------| log|-1 + -------|
| 2 | | 2 |
1 1 \sec (x)/ \ sec (x)/
- - + ------- - ------------ + -----------------
2 2 4 4
sec (x)
$$\frac{\log{\left(-1 + \frac{1}{\sec^{2}{\left(x \right)}} \right)}}{4} - \frac{\log{\left(\frac{1}{\sec^{2}{\left(x \right)}} \right)}}{4} - \frac{1}{2} + \frac{1}{\sec^{2}{\left(x \right)}}$$
/ 1 \ / 1 \
log|------------| log|-1 + ------------|
| 2/pi \| | 2/pi \|
|csc |-- - x|| | csc |-- - x||
1 1 \ \2 // \ \2 //
- - + ------------ - ----------------- + ----------------------
2 2/pi \ 4 4
csc |-- - x|
\2 /
$$\frac{\log{\left(-1 + \frac{1}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}} \right)}}{4} - \frac{\log{\left(\frac{1}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}} \right)}}{4} - \frac{1}{2} + \frac{1}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}}$$
cos(2*x) log(1 + cos(2*x)) log(-1 + cos(2*x))
-------- - ----------------- + ------------------
2 4 4
$$\frac{\log{\left(\cos{\left(2 x \right)} - 1 \right)}}{4} - \frac{\log{\left(\cos{\left(2 x \right)} + 1 \right)}}{4} + \frac{\cos{\left(2 x \right)}}{2}$$
/ 2/ pi\\ / 2/ pi\\
log|sin |x + --|| log|-1 + sin |x + --||
1 2/ pi\ \ \ 2 // \ \ 2 //
- - + sin |x + --| - ----------------- + ----------------------
2 \ 2 / 4 4
$$\frac{\log{\left(\sin^{2}{\left(x + \frac{\pi}{2} \right)} - 1 \right)}}{4} - \frac{\log{\left(\sin^{2}{\left(x + \frac{\pi}{2} \right)} \right)}}{4} + \sin^{2}{\left(x + \frac{\pi}{2} \right)} - \frac{1}{2}$$
/ 2\ / 2\
|/ 2/x\\ | | / 2/x\\ |
||-1 + cot |-|| | | |-1 + cot |-|| |
|\ \2// | | \ \2// |
log|---------------| log|-1 + ---------------|
| 2| | 2| 2
| / 2/x\\ | | / 2/x\\ | / 2/x\\
| |1 + cot |-|| | | |1 + cot |-|| | |-1 + cot |-||
1 \ \ \2// / \ \ \2// / \ \2//
- - - -------------------- + ------------------------- + ---------------
2 4 4 2
/ 2/x\\
|1 + cot |-||
\ \2//
$$\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} - \frac{\log{\left(\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} \right)}}{4} + \frac{\log{\left(\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} - 1 \right)}}{4} - \frac{1}{2}$$
/pi \ / /pi \\ / /pi \\
sin|-- + 2*x| log|1 + sin|-- + 2*x|| log|-1 + sin|-- + 2*x||
\2 / \ \2 // \ \2 //
------------- - ---------------------- + -----------------------
2 4 4
$$\frac{\log{\left(\sin{\left(2 x + \frac{\pi}{2} \right)} - 1 \right)}}{4} - \frac{\log{\left(\sin{\left(2 x + \frac{\pi}{2} \right)} + 1 \right)}}{4} + \frac{\sin{\left(2 x + \frac{\pi}{2} \right)}}{2}$$
/ 2 \ / 2 \
cos(2*x) - log\cos (x)/ + log\-1 + cos (x)/
-------- + ----------------------------------
2 4
$$\frac{\log{\left(\cos^{2}{\left(x \right)} - 1 \right)} - \log{\left(\cos^{2}{\left(x \right)} \right)}}{4} + \frac{\cos{\left(2 x \right)}}{2}$$
/ 1 \ / 1 \
log|1 + -------------| log|-1 + -------------|
| /pi \| | /pi \|
| csc|-- - 2*x|| | csc|-- - 2*x||
1 \ \2 // \ \2 //
--------------- - ---------------------- + -----------------------
/pi \ 4 4
2*csc|-- - 2*x|
\2 /
$$\frac{\log{\left(-1 + \frac{1}{\csc{\left(- 2 x + \frac{\pi}{2} \right)}} \right)}}{4} - \frac{\log{\left(1 + \frac{1}{\csc{\left(- 2 x + \frac{\pi}{2} \right)}} \right)}}{4} + \frac{1}{2 \csc{\left(- 2 x + \frac{\pi}{2} \right)}}$$
1/(2*csc(pi/2 - 2*x)) - log(1 + 1/csc(pi/2 - 2*x))/4 + log(-1 + 1/csc(pi/2 - 2*x))/4