Mister Exam

Least common denominator cos(x+pi/2)-sin(y+pi/2)

An expression to simplify:

The solution

You have entered [src]
   /    pi\      /    pi\
cos|x + --| - sin|y + --|
   \    2 /      \    2 /
$$- \sin{\left(y + \frac{\pi}{2} \right)} + \cos{\left(x + \frac{\pi}{2} \right)}$$
cos(x + pi/2) - sin(y + pi/2)
General simplification [src]
-cos(y) - sin(x)
$$- \sin{\left(x \right)} - \cos{\left(y \right)}$$
-cos(y) - sin(x)
Numerical answer [src]
-sin(y + pi/2) + cos(x + pi/2)
-sin(y + pi/2) + cos(x + pi/2)
Combinatorics [src]
-cos(y) - sin(x)
$$- \sin{\left(x \right)} - \cos{\left(y \right)}$$
-cos(y) - sin(x)
Powers [src]
   /    pi\      /     pi\     /     /     pi\      /    pi\\
 I*|x + --|    I*|-x - --|     |   I*|-y - --|    I*|y + --||
   \    2 /      \     2 /     |     \     2 /      \    2 /|
e             e              I*\- e            + e          /
----------- + ------------ + --------------------------------
     2             2                        2                
$$\frac{i \left(- e^{i \left(- y - \frac{\pi}{2}\right)} + e^{i \left(y + \frac{\pi}{2}\right)}\right)}{2} + \frac{e^{i \left(- x - \frac{\pi}{2}\right)}}{2} + \frac{e^{i \left(x + \frac{\pi}{2}\right)}}{2}$$
-cos(y) - sin(x)
$$- \sin{\left(x \right)} - \cos{\left(y \right)}$$
-cos(y) - sin(x)
Combining rational expressions [src]
     /pi + 2*y\      /pi + 2*x\
- sin|--------| + cos|--------|
     \   2    /      \   2    /
$$- \sin{\left(\frac{2 y + \pi}{2} \right)} + \cos{\left(\frac{2 x + \pi}{2} \right)}$$
-sin((pi + 2*y)/2) + cos((pi + 2*x)/2)
Common denominator [src]
-cos(y) - sin(x)
$$- \sin{\left(x \right)} - \cos{\left(y \right)}$$
-cos(y) - sin(x)
Expand expression [src]
-cos(y) - sin(x)
$$- \sin{\left(x \right)} - \cos{\left(y \right)}$$
-cos(y) - sin(x)
Trigonometric part [src]
        2/x   pi\         /y   pi\  
-1 + cot |- + --|    2*cot|- + --|  
         \2   4 /         \2   4 /  
----------------- - ----------------
        2/x   pi\          2/y   pi\
 1 + cot |- + --|   1 + cot |- + --|
         \2   4 /           \2   4 /
$$\frac{\cot^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} - 1}{\cot^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} + 1} - \frac{2 \cot{\left(\frac{y}{2} + \frac{\pi}{4} \right)}}{\cot^{2}{\left(\frac{y}{2} + \frac{\pi}{4} \right)} + 1}$$
    1           1     
- ------ - -----------
  sec(y)      /pi    \
           sec|-- - x|
              \2     /
$$- \frac{1}{\sec{\left(- x + \frac{\pi}{2} \right)}} - \frac{1}{\sec{\left(y \right)}}$$
         1           2   
1 - ----------- - -------
       /    pi\      2/y\
    sec|x - --|   sec |-|
       \    2 /       \2/
$$1 - \frac{1}{\sec{\left(x - \frac{\pi}{2} \right)}} - \frac{2}{\sec^{2}{\left(\frac{y}{2} \right)}}$$
             /        2/x   pi\\                           
(1 + sin(x))*|-1 + cot |- + --||                           
             \         \2   4 //                   /y   pi\
-------------------------------- - (1 + sin(y))*cot|- + --|
               2                                   \2   4 /
$$\frac{\left(\sin{\left(x \right)} + 1\right) \left(\cot^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} - 1\right)}{2} - \left(\sin{\left(y \right)} + 1\right) \cot{\left(\frac{y}{2} + \frac{\pi}{4} \right)}$$
             /    pi\
-sin(x) - sin|y + --|
             \    2 /
$$- \sin{\left(x \right)} - \sin{\left(y + \frac{\pi}{2} \right)}$$
          /       /y\\             
          |1 - tan|-||*(1 + sin(y))
          \       \2//             
-sin(x) - -------------------------
                         /y\       
                  1 + tan|-|       
                         \2/       
$$- \frac{\left(1 - \tan{\left(\frac{y}{2} \right)}\right) \left(\sin{\left(y \right)} + 1\right)}{\tan{\left(\frac{y}{2} \right)} + 1} - \sin{\left(x \right)}$$
-cos(y) - sin(x)
$$- \sin{\left(x \right)} - \cos{\left(y \right)}$$
             /          1      \              
(1 + sin(x))*|-1 + ------------|              
             |        2/x   pi\|              
             |     tan |- + --||              
             \         \2   4 //    1 + sin(y)
-------------------------------- - -----------
               2                      /y   pi\
                                   tan|- + --|
                                      \2   4 /
$$\frac{\left(-1 + \frac{1}{\tan^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right) \left(\sin{\left(x \right)} + 1\right)}{2} - \frac{\sin{\left(y \right)} + 1}{\tan{\left(\frac{y}{2} + \frac{\pi}{4} \right)}}$$
                                 2
           /x\      /       2/y\\ 
      2*tan|-|    2*|1 - tan |-|| 
           \2/      \        \4// 
1 - ----------- - ----------------
           2/x\                 2 
    1 + tan |-|    /       2/y\\  
            \2/    |1 + tan |-||  
                   \        \4//  
$$- \frac{2 \left(1 - \tan^{2}{\left(\frac{y}{4} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{y}{4} \right)} + 1\right)^{2}} + 1 - \frac{2 \tan{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1}$$
    1        1   
- ------ - ------
  csc(x)   sec(y)
$$- \frac{1}{\sec{\left(y \right)}} - \frac{1}{\csc{\left(x \right)}}$$
                  /        2/x   pi\\                                
                  |     sec |- - --||                                
/         1     \ |         \2   4 /|   /         1     \    /y   pi\
|1 + -----------|*|-1 + ------------|   |1 + -----------|*sec|- - --|
|       /    pi\| |        2/x   pi\|   |       /    pi\|    \2   4 /
|    sec|x - --|| |     sec |- + --||   |    sec|y - --||            
\       \    2 // \         \2   4 //   \       \    2 //            
------------------------------------- - -----------------------------
                  2                                 /y   pi\         
                                                 sec|- + --|         
                                                    \2   4 /         
$$\frac{\left(1 + \frac{1}{\sec{\left(x - \frac{\pi}{2} \right)}}\right) \left(\frac{\sec^{2}{\left(\frac{x}{2} - \frac{\pi}{4} \right)}}{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} - 1\right)}{2} - \frac{\left(1 + \frac{1}{\sec{\left(y - \frac{\pi}{2} \right)}}\right) \sec{\left(\frac{y}{2} - \frac{\pi}{4} \right)}}{\sec{\left(\frac{y}{2} + \frac{\pi}{4} \right)}}$$
             /         2/x   pi\ \                           
             |      csc |- + --| |                           
/      1   \ |          \2   4 / |                           
|1 + ------|*|-1 + --------------|                           
\    csc(x)/ |        2/  x   pi\|   /      1   \    /y   pi\
             |     csc |- - + --||   |1 + ------|*csc|- + --|
             \         \  2   4 //   \    csc(y)/    \2   4 /
---------------------------------- - ------------------------
                2                            /  y   pi\      
                                          csc|- - + --|      
                                             \  2   4 /      
$$\frac{\left(-1 + \frac{\csc^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{\csc^{2}{\left(- \frac{x}{2} + \frac{\pi}{4} \right)}}\right) \left(1 + \frac{1}{\csc{\left(x \right)}}\right)}{2} - \frac{\left(1 + \frac{1}{\csc{\left(y \right)}}\right) \csc{\left(\frac{y}{2} + \frac{\pi}{4} \right)}}{\csc{\left(- \frac{y}{2} + \frac{\pi}{4} \right)}}$$
                  2/y\
1 - sin(x) - 2*cos |-|
                   \2/
$$- \sin{\left(x \right)} - 2 \cos^{2}{\left(\frac{y}{2} \right)} + 1$$
         2/y\          /x\ 
  1 - tan |-|     2*tan|-| 
          \2/          \2/ 
- ----------- - -----------
         2/y\          2/x\
  1 + tan |-|   1 + tan |-|
          \2/           \2/
$$- \frac{1 - \tan^{2}{\left(\frac{y}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} \right)} + 1} - \frac{2 \tan{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1}$$
       /    pi\        2/y\
1 - cos|x - --| - 2*cos |-|
       \    2 /         \2/
$$- 2 \cos^{2}{\left(\frac{y}{2} \right)} - \cos{\left(x - \frac{\pi}{2} \right)} + 1$$
             /           2       \                      
             |        cos (x)    |                      
(1 + sin(x))*|-1 + --------------|                      
             |          4/x   pi\|                      
             |     4*sin |- + --||                      
             \           \2   4 //   (1 + sin(y))*cos(y)
---------------------------------- - -------------------
                2                            2/y   pi\  
                                        2*sin |- + --|  
                                              \2   4 /  
$$\frac{\left(-1 + \frac{\cos^{2}{\left(x \right)}}{4 \sin^{4}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right) \left(\sin{\left(x \right)} + 1\right)}{2} - \frac{\left(\sin{\left(y \right)} + 1\right) \cos{\left(y \right)}}{2 \sin^{2}{\left(\frac{y}{2} + \frac{\pi}{4} \right)}}$$
/           /x\ \                                  /y\ 
|      2*tan|-| |                             2*tan|-| 
|           \2/ | /          1      \              \2/ 
|1 + -----------|*|-1 + ------------|   1 + -----------
|           2/x\| |        2/x   pi\|              2/y\
|    1 + tan |-|| |     tan |- + --||       1 + tan |-|
\            \2// \         \2   4 //               \2/
------------------------------------- - ---------------
                  2                          /y   pi\  
                                          tan|- + --|  
                                             \2   4 /  
$$\frac{\left(-1 + \frac{1}{\tan^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right) \left(1 + \frac{2 \tan{\left(\frac{x}{2} \right)}}{\tan^{2}{\left(\frac{x}{2} \right)} + 1}\right)}{2} - \frac{1 + \frac{2 \tan{\left(\frac{y}{2} \right)}}{\tan^{2}{\left(\frac{y}{2} \right)} + 1}}{\tan{\left(\frac{y}{2} + \frac{\pi}{4} \right)}}$$
    1           1     
- ------ - -----------
  sec(y)      /    pi\
           sec|x - --|
              \    2 /
$$- \frac{1}{\sec{\left(x - \frac{\pi}{2} \right)}} - \frac{1}{\sec{\left(y \right)}}$$
             /    pi\
-cos(y) - cos|x - --|
             \    2 /
$$- \cos{\left(y \right)} - \cos{\left(x - \frac{\pi}{2} \right)}$$
          2/y\          /x\ 
  -1 + cot |-|     2*cot|-| 
           \2/          \2/ 
- ------------ - -----------
         2/y\           2/x\
  1 + cot |-|    1 + cot |-|
          \2/            \2/
$$- \frac{\cot^{2}{\left(\frac{y}{2} \right)} - 1}{\cot^{2}{\left(\frac{y}{2} \right)} + 1} - \frac{2 \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} + 1}$$
      1           2      
1 - ------ - ------------
    csc(x)      2/pi   y\
             csc |-- - -|
                 \2    2/
$$1 - \frac{2}{\csc^{2}{\left(- \frac{y}{2} + \frac{\pi}{2} \right)}} - \frac{1}{\csc{\left(x \right)}}$$
    1           1     
- ------ - -----------
  csc(x)      /pi    \
           csc|-- - y|
              \2     /
$$- \frac{1}{\csc{\left(- y + \frac{\pi}{2} \right)}} - \frac{1}{\csc{\left(x \right)}}$$
                  /        2/x   pi\\                                
                  |     cos |- + --||                                
/       /    pi\\ |         \2   4 /|                                
|1 + cos|x - --||*|-1 + ------------|                                
\       \    2 // |        2/x   pi\|   /       /    pi\\    /y   pi\
                  |     cos |- - --||   |1 + cos|y - --||*cos|- + --|
                  \         \2   4 //   \       \    2 //    \2   4 /
------------------------------------- - -----------------------------
                  2                                 /y   pi\         
                                                 cos|- - --|         
                                                    \2   4 /         
$$\frac{\left(-1 + \frac{\cos^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{\cos^{2}{\left(\frac{x}{2} - \frac{\pi}{4} \right)}}\right) \left(\cos{\left(x - \frac{\pi}{2} \right)} + 1\right)}{2} - \frac{\left(\cos{\left(y - \frac{\pi}{2} \right)} + 1\right) \cos{\left(\frac{y}{2} + \frac{\pi}{4} \right)}}{\cos{\left(\frac{y}{2} - \frac{\pi}{4} \right)}}$$
       2/x   pi\         /y   pi\  
1 - tan |- + --|    2*tan|- + --|  
        \2   4 /         \2   4 /  
---------------- - ----------------
       2/x   pi\          2/y   pi\
1 + tan |- + --|   1 + tan |- + --|
        \2   4 /           \2   4 /
$$\frac{1 - \tan^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{\tan^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} + 1} - \frac{2 \tan{\left(\frac{y}{2} + \frac{\pi}{4} \right)}}{\tan^{2}{\left(\frac{y}{2} + \frac{\pi}{4} \right)} + 1}$$
                                  2
           /x\      /        2/y\\ 
      2*cot|-|    2*|-1 + cot |-|| 
           \2/      \         \4// 
1 - ----------- - -----------------
           2/x\                  2 
    1 + cot |-|     /       2/y\\  
            \2/     |1 + cot |-||  
                    \        \4//  
$$- \frac{2 \left(\cot^{2}{\left(\frac{y}{4} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{y}{4} \right)} + 1\right)^{2}} + 1 - \frac{2 \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} + 1}$$
/           /x\ \                                                    
|      2*cot|-| |                                                    
|           \2/ | /        2/x   pi\\                                
|1 + -----------|*|-1 + cot |- + --||                                
|           2/x\| \         \2   4 //   /           /y\ \            
|    1 + cot |-||                       |      2*cot|-| |            
\            \2//                       |           \2/ |    /y   pi\
------------------------------------- - |1 + -----------|*cot|- + --|
                  2                     |           2/y\|    \2   4 /
                                        |    1 + cot |-||            
                                        \            \2//            
$$\frac{\left(1 + \frac{2 \cot{\left(\frac{x}{2} \right)}}{\cot^{2}{\left(\frac{x}{2} \right)} + 1}\right) \left(\cot^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} - 1\right)}{2} - \left(1 + \frac{2 \cot{\left(\frac{y}{2} \right)}}{\cot^{2}{\left(\frac{y}{2} \right)} + 1}\right) \cot{\left(\frac{y}{2} + \frac{\pi}{4} \right)}$$
                  2/pi   y\
1 - sin(x) - 2*sin |-- + -|
                   \2    2/
$$- \sin{\left(x \right)} - 2 \sin^{2}{\left(\frac{y}{2} + \frac{\pi}{2} \right)} + 1$$
-cos(y) + sin(pi + x)
$$\sin{\left(x + \pi \right)} - \cos{\left(y \right)}$$
-cos(y) + sin(pi + x)