Mister Exam

Other calculators:


(1+n)*(4+n)/(n*(3+n))

Limit of the function (1+n)*(4+n)/(n*(3+n))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /(1 + n)*(4 + n)\
 lim |---------------|
n->oo\   n*(3 + n)   /
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n \left(n + 3\right)}\right)$$
Limit(((1 + n)*(4 + n))/((n*(3 + n))), n, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n}\right) = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty}\left(n + 3\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n \left(n + 3\right)}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n \left(n + 3\right)}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \frac{\left(n + 1\right) \left(n + 4\right)}{n}}{\frac{d}{d n} \left(n + 3\right)}\right)$$
=
$$\lim_{n \to \infty}\left(1 - \frac{4}{n^{2}}\right)$$
=
$$\lim_{n \to \infty}\left(1 - \frac{4}{n^{2}}\right)$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
1
$$1$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n \left(n + 3\right)}\right) = 1$$
$$\lim_{n \to 0^-}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n \left(n + 3\right)}\right) = -\infty$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n \left(n + 3\right)}\right) = \infty$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n \left(n + 3\right)}\right) = \frac{5}{2}$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n \left(n + 3\right)}\right) = \frac{5}{2}$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{\left(n + 1\right) \left(n + 4\right)}{n \left(n + 3\right)}\right) = 1$$
More at n→-oo
The graph
Limit of the function (1+n)*(4+n)/(n*(3+n))