Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-16+x^2-6*x)/(-2+x+x^2)
Limit of -1+sqrt(5)-x-2/(sqrt(2)-x)
Limit of (e^x-x-cos(x))/(-x+log(1+x))
Limit of (-cos(x)^3+cos(x))/(4*x*sin(x))
Identical expressions
z^ two -i
z squared minus i
z to the power of two minus i
z2-i
z²-i
z to the power of 2-i
Similar expressions
z^2+i
Limit of the function
/
z^2-i
Limit of the function z^2-i
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2 \ lim \z - I/ z->oo
$$\lim_{z \to \infty}\left(z^{2} - i\right)$$
Limit(z^2 - i, z, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{z \to \infty}\left(z^{2} - i\right)$$
Let's divide numerator and denominator by z^2:
$$\lim_{z \to \infty}\left(z^{2} - i\right)$$ =
$$\lim_{z \to \infty}\left(\frac{1 - \frac{i}{z^{2}}}{\frac{1}{z^{2}}}\right)$$
Do Replacement
$$u = \frac{1}{z}$$
then
$$\lim_{z \to \infty}\left(\frac{1 - \frac{i}{z^{2}}}{\frac{1}{z^{2}}}\right) = \lim_{u \to 0^+}\left(\frac{- i u^{2} + 1}{u^{2}}\right)$$
=
$$\frac{- 0^{2} i + 1}{0} = \infty$$
The final answer:
$$\lim_{z \to \infty}\left(z^{2} - i\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits z→0, -oo, +oo, 1
$$\lim_{z \to \infty}\left(z^{2} - i\right) = \infty$$
$$\lim_{z \to 0^-}\left(z^{2} - i\right) = - i$$
More at z→0 from the left
$$\lim_{z \to 0^+}\left(z^{2} - i\right) = - i$$
More at z→0 from the right
$$\lim_{z \to 1^-}\left(z^{2} - i\right) = 1 - i$$
More at z→1 from the left
$$\lim_{z \to 1^+}\left(z^{2} - i\right) = 1 - i$$
More at z→1 from the right
$$\lim_{z \to -\infty}\left(z^{2} - i\right) = \infty$$
More at z→-oo
The graph