Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1-log(7*x))^(7*x)
Limit of sin(x)/sqrt(1-cos(x))
Limit of (e^x-e^2)/(-2+x)
Limit of tan(3*x)/(7*x)
Integral of d{x}
:
y^3
Graphing y =
:
y^3
Derivative of
:
y^3
Identical expressions
y^ three
y cubed
y to the power of three
y3
y³
y to the power of 3
Similar expressions
2*y^4+x*y^3-3*x^2*y^2
(x+y)^3/(x^2+y^2)
Limit of the function
/
y^3
Limit of the function y^3
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
3 lim y y->oo
$$\lim_{y \to \infty} y^{3}$$
Limit(y^3, y, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{y \to \infty} y^{3}$$
Let's divide numerator and denominator by y^3:
$$\lim_{y \to \infty} y^{3}$$ =
$$\lim_{y \to \infty} \frac{1}{\frac{1}{y^{3}}}$$
Do Replacement
$$u = \frac{1}{y}$$
then
$$\lim_{y \to \infty} \frac{1}{\frac{1}{y^{3}}} = \lim_{u \to 0^+} \frac{1}{u^{3}}$$
=
$$\frac{1}{0} = \infty$$
The final answer:
$$\lim_{y \to \infty} y^{3} = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits y→0, -oo, +oo, 1
$$\lim_{y \to \infty} y^{3} = \infty$$
$$\lim_{y \to 0^-} y^{3} = 0$$
More at y→0 from the left
$$\lim_{y \to 0^+} y^{3} = 0$$
More at y→0 from the right
$$\lim_{y \to 1^-} y^{3} = 1$$
More at y→1 from the left
$$\lim_{y \to 1^+} y^{3} = 1$$
More at y→1 from the right
$$\lim_{y \to -\infty} y^{3} = -\infty$$
More at y→-oo
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
The graph