Mister Exam

Other calculators:


y^3

Limit of the function y^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      3
 lim y 
y->oo  
$$\lim_{y \to \infty} y^{3}$$
Limit(y^3, y, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{y \to \infty} y^{3}$$
Let's divide numerator and denominator by y^3:
$$\lim_{y \to \infty} y^{3}$$ =
$$\lim_{y \to \infty} \frac{1}{\frac{1}{y^{3}}}$$
Do Replacement
$$u = \frac{1}{y}$$
then
$$\lim_{y \to \infty} \frac{1}{\frac{1}{y^{3}}} = \lim_{u \to 0^+} \frac{1}{u^{3}}$$
=
$$\frac{1}{0} = \infty$$

The final answer:
$$\lim_{y \to \infty} y^{3} = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits y→0, -oo, +oo, 1
$$\lim_{y \to \infty} y^{3} = \infty$$
$$\lim_{y \to 0^-} y^{3} = 0$$
More at y→0 from the left
$$\lim_{y \to 0^+} y^{3} = 0$$
More at y→0 from the right
$$\lim_{y \to 1^-} y^{3} = 1$$
More at y→1 from the left
$$\lim_{y \to 1^+} y^{3} = 1$$
More at y→1 from the right
$$\lim_{y \to -\infty} y^{3} = -\infty$$
More at y→-oo
Rapid solution [src]
oo
$$\infty$$
The graph
Limit of the function y^3